Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,69 @@
|
|
1 |
-
|
2 |
-
from fastapi import FastAPI, Query, HTTPException
|
3 |
-
from typing import List, Dict, Optional
|
4 |
-
import httpx
|
5 |
-
import openai
|
6 |
-
|
7 |
-
# ENVIRONMENT VARIABLES for API keys (set these securely in your deployment)
|
8 |
-
ARXIV_API = "http://export.arxiv.org/api/query?search_query="
|
9 |
-
PUBMED_API = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
10 |
-
PUBMED_FETCH = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
11 |
-
OPENFDA_ENDPOINT = "https://api.fda.gov/drug/event.json"
|
12 |
-
UMLS_AUTH = "https://utslogin.nlm.nih.gov/cas/v1/api-key"
|
13 |
-
UMLS_SEARCH = "https://uts-ws.nlm.nih.gov/rest/search/current"
|
14 |
-
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
15 |
-
UMLS_API_KEY = os.environ.get("UMLS_KEY")
|
16 |
-
PUB_KEY = os.environ.get("PUB_KEY")
|
17 |
-
|
18 |
-
app = FastAPI(
|
19 |
-
title="Ultimate AI-Powered Research MCP Server",
|
20 |
-
description="Integrates ArXiv, PubMed, OpenFDA, UMLS, and OpenAI for world-class research.",
|
21 |
-
version="1.0.0",
|
22 |
-
)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
async with httpx.AsyncClient() as client:
|
31 |
-
r = await client.get(url)
|
32 |
-
# TODO: Parse arXiv Atom XML and extract paper metadata
|
33 |
-
return []
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
async with httpx.AsyncClient() as client:
|
39 |
-
r = await client.get(PUBMED_API, params=params)
|
40 |
-
ids = r.json()["esearchresult"]["idlist"]
|
41 |
-
fetch_params = {"db": "pubmed", "id": ",".join(ids), "retmode": "xml", "api_key": PUB_KEY}
|
42 |
-
rf = await client.get(PUBMED_FETCH, params=fetch_params)
|
43 |
-
# TODO: Parse PubMed XML to get metadata
|
44 |
-
return []
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
auth = await client.post(UMLS_AUTH, data={"apikey": UMLS_API_KEY})
|
50 |
-
ticket = auth.text # TODO: parse ticket
|
51 |
-
params = {"string": term, "ticket": ticket}
|
52 |
-
search = await client.get(UMLS_SEARCH, params=params)
|
53 |
-
# TODO: Extract CUIs and definitions
|
54 |
-
return {}
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
r = await client.get(OPENFDA_ENDPOINT, params=params)
|
60 |
-
# TODO: Parse adverse event data
|
61 |
-
return {}
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
)
|
73 |
-
return response['choices'][0]['message']['content']
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
umls_results = [await fetch_umls(k) for k in keywords]
|
86 |
-
drug_data = [await fetch_openfda(k) for k in keywords]
|
87 |
-
summary = await ai_summarize(str(all_papers))
|
88 |
-
return {
|
89 |
-
"papers": all_papers,
|
90 |
-
"umls": umls_results,
|
91 |
-
"drug_safety": drug_data,
|
92 |
-
"ai_summary": summary,
|
93 |
-
"suggested_reading": [p.get('link') for p in all_papers[:3]]
|
94 |
-
}
|
95 |
-
|
96 |
-
@app.get("/get_umls_info")
|
97 |
-
async def get_umls_info(term: str):
|
98 |
-
result = await fetch_umls(term)
|
99 |
-
return result
|
100 |
-
|
101 |
-
@app.get("/fetch_drug_safety")
|
102 |
-
async def fetch_drug_safety(drug: str):
|
103 |
-
result = await fetch_openfda(drug)
|
104 |
-
return result
|
105 |
-
|
106 |
-
@app.post("/ask_ai")
|
107 |
-
async def ask_ai(question: str, context: Optional[str] = None):
|
108 |
-
openai.api_key = OPENAI_API_KEY
|
109 |
-
response = openai.ChatCompletion.create(
|
110 |
-
model="gpt-4o",
|
111 |
-
messages=[
|
112 |
-
{"role": "system", "content": "You are an advanced multi-domain biomedical research agent. Use information from ArXiv, PubMed, OpenFDA, and UMLS when answering."},
|
113 |
-
{"role": "user", "content": f"Question: {question}\nContext: {context or ''}"}
|
114 |
-
],
|
115 |
-
max_tokens=512
|
116 |
-
)
|
117 |
-
return {"answer": response['choices'][0]['message']['content']}
|
118 |
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import os
|
4 |
+
import streamlit as st
|
5 |
+
from fastapi import FastAPI
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
+
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
8 |
+
from mcp.schemas import UnifiedSearchInput, UnifiedSearchResult
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Initialize FastAPI app for API users
|
11 |
+
api = FastAPI(title="MCP Research Server", version="2.0")
|
12 |
+
api.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
@api.post("/unified_search", response_model=UnifiedSearchResult)
|
15 |
+
async def unified_search_endpoint(data: UnifiedSearchInput):
|
16 |
+
return await orchestrate_search(data.query)
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
@api.post("/ask_ai")
|
19 |
+
async def ask_ai_endpoint(question: str, context: str = ""):
|
20 |
+
return await answer_ai_question(question, context)
|
|
|
|
|
|
|
21 |
|
22 |
+
# Streamlit UI for Hugging Face Space
|
23 |
+
def render_ui():
|
24 |
+
st.set_page_config(page_title="Ultimate Research Assistant", page_icon=":microscope:", layout="wide")
|
25 |
+
st.image("assets/logo.png", width=100)
|
26 |
+
st.title("🔬 Next-Gen AI-Powered Biomedical Research Assistant")
|
27 |
+
st.markdown(
|
28 |
+
"""
|
29 |
+
*Combine the power of ArXiv, PubMed, UMLS, OpenFDA, and OpenAI.
|
30 |
+
Get instant, unified, semantically-ranked answers—plus drug safety, concept enrichment, and expert Q&A!*
|
31 |
+
"""
|
32 |
)
|
|
|
33 |
|
34 |
+
query = st.text_input("Enter your research question or topic:", value="What are the latest treatments for Alzheimer's disease?")
|
35 |
+
if st.button("Run Unified Search 🚀"):
|
36 |
+
with st.spinner("Retrieving and synthesizing knowledge..."):
|
37 |
+
results = orchestrate_search(query)
|
38 |
+
st.success("Here are the results!")
|
39 |
+
for i, paper in enumerate(results['papers'], 1):
|
40 |
+
st.markdown(f"**{i}. [{paper['title']}]({paper['link']})** \n*{paper['authors']}*")
|
41 |
+
st.write(paper['summary'])
|
42 |
+
st.subheader("UMLS Concept Enrichment")
|
43 |
+
for c in results['umls']:
|
44 |
+
st.write(f"**{c['name']}** (CUI: {c['cui']}): {c['definition']}")
|
45 |
+
st.subheader("Drug & Safety Insights")
|
46 |
+
for d in results['drug_safety']:
|
47 |
+
st.write(d)
|
48 |
+
st.subheader("AI-Generated Synthesis")
|
49 |
+
st.info(results['ai_summary'])
|
50 |
+
st.markdown("#### 📚 Suggested Reading")
|
51 |
+
for link in results['suggested_reading']:
|
52 |
+
st.write(f"- {link}")
|
53 |
|
54 |
+
st.markdown("---")
|
55 |
+
st.subheader("🤖 Ask a follow-up (AI Q&A):")
|
56 |
+
follow_up = st.text_input("Type your question here:")
|
57 |
+
if st.button("Ask AI"):
|
58 |
+
with st.spinner("AI is thinking..."):
|
59 |
+
answer = answer_ai_question(follow_up, context=query)
|
60 |
+
st.success("AI says:")
|
61 |
+
st.write(answer['answer'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
import sys
|
65 |
+
if "runserver" in sys.argv:
|
66 |
+
import uvicorn
|
67 |
+
uvicorn.run(api, host="0.0.0.0", port=7860)
|
68 |
+
else:
|
69 |
+
render_ui()
|