Create orchestrator.py
Browse files- mcp/orchestrator.py +37 -0
mcp/orchestrator.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mcp/orchestrator.py
|
2 |
+
|
3 |
+
from mcp.arxiv import fetch_arxiv
|
4 |
+
from mcp.pubmed import fetch_pubmed
|
5 |
+
from mcp.nlp import extract_keywords
|
6 |
+
from mcp.umls import lookup_umls
|
7 |
+
from mcp.openfda import fetch_drug_safety
|
8 |
+
from mcp.openai_utils import ai_summarize, ai_qa
|
9 |
+
|
10 |
+
async def orchestrate_search(query: str) -> dict:
|
11 |
+
# Fetch results in parallel (use asyncio.gather for speed)
|
12 |
+
arxiv_results = await fetch_arxiv(query)
|
13 |
+
pubmed_results = await fetch_pubmed(query)
|
14 |
+
all_papers = arxiv_results + pubmed_results
|
15 |
+
# Semantic ranking (use OpenAI embeddings or similar)
|
16 |
+
# ...
|
17 |
+
# NLP: extract keywords/drugs
|
18 |
+
keywords = extract_keywords(" ".join([p['summary'] for p in all_papers]))
|
19 |
+
# UMLS enrichment
|
20 |
+
umls_results = [await lookup_umls(k) for k in keywords]
|
21 |
+
# Drug safety
|
22 |
+
drug_data = [await fetch_drug_safety(k) for k in keywords]
|
23 |
+
# Summarization
|
24 |
+
summary = await ai_summarize(" ".join([p['summary'] for p in all_papers]))
|
25 |
+
# Suggest reading (top links)
|
26 |
+
links = [p['link'] for p in all_papers[:3]]
|
27 |
+
return {
|
28 |
+
"papers": all_papers,
|
29 |
+
"umls": umls_results,
|
30 |
+
"drug_safety": drug_data,
|
31 |
+
"ai_summary": summary,
|
32 |
+
"suggested_reading": links,
|
33 |
+
}
|
34 |
+
|
35 |
+
async def answer_ai_question(question: str, context: str = "") -> dict:
|
36 |
+
answer = await ai_qa(question, context)
|
37 |
+
return {"answer": answer}
|