Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,14 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import asyncio, re
|
3 |
from pathlib import Path
|
4 |
|
@@ -14,158 +24,156 @@ from mcp.knowledge_graph import build_agraph
|
|
14 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
15 |
from mcp.alerts import check_alerts
|
16 |
|
17 |
-
ROOT
|
18 |
-
LOGO
|
19 |
|
20 |
-
#
|
21 |
def _pdf(papers):
|
22 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=11)
|
23 |
pdf.cell(200, 8, "MedGenesis AI – Results", ln=True, align="C"); pdf.ln(3)
|
24 |
for i, p in enumerate(papers, 1):
|
25 |
-
pdf.set_font("Arial", "B", 11)
|
|
|
26 |
pdf.set_font("Arial", "", 9)
|
27 |
pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
|
28 |
pdf.ln(1)
|
29 |
return pdf.output(dest="S").encode("latin-1")
|
30 |
|
31 |
-
def
|
32 |
with st.sidebar:
|
33 |
st.header("🗂️ Workspace")
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
with st.expander(f"{i}. {item['query']}"):
|
36 |
st.write(item["result"]["ai_summary"])
|
37 |
-
df = pd.DataFrame(item["result"]["papers"])
|
38 |
-
st.download_button("CSV", df.to_csv(index=False),
|
39 |
-
f"ws_{i}.csv", "text/csv")
|
40 |
-
if not get_workspace():
|
41 |
-
st.info("Run a search and press **Save** to fill your workspace.")
|
42 |
|
43 |
-
#
|
44 |
def render_ui():
|
45 |
st.set_page_config("MedGenesis AI", layout="wide")
|
46 |
-
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
with
|
51 |
if LOGO.exists():
|
52 |
st.image(str(LOGO), width=105)
|
53 |
-
with
|
54 |
st.markdown("## 🧬 **MedGenesis AI**")
|
55 |
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
|
56 |
|
57 |
-
llm = st.radio("LLM
|
58 |
-
query = st.text_input("Enter biomedical question
|
59 |
-
placeholder="e.g. CRISPR
|
60 |
|
61 |
-
#
|
62 |
if get_workspace():
|
63 |
try:
|
64 |
news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
|
65 |
if news:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
st.write(f"**{q}** – {len(links)} new")
|
70 |
except Exception as e:
|
71 |
st.sidebar.warning(f"Alert check failed: {e}")
|
72 |
|
73 |
-
# Run
|
74 |
if st.button("Run Search 🚀") and query:
|
75 |
-
with st.spinner("
|
76 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
77 |
-
st.success(f"
|
78 |
|
79 |
-
tabs = st.tabs(["Results", "Genes", "Trials", "Graph",
|
|
|
80 |
|
81 |
-
#
|
82 |
with tabs[0]:
|
83 |
for i, p in enumerate(res["papers"], 1):
|
84 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
85 |
-
st.
|
86 |
-
unsafe_allow_html=True)
|
87 |
|
88 |
-
|
89 |
-
with
|
90 |
-
st.download_button("
|
91 |
pd.DataFrame(res["papers"]).to_csv(index=False),
|
92 |
"papers.csv", "text/csv")
|
93 |
-
with
|
94 |
-
st.download_button("
|
95 |
"papers.pdf", "application/pdf")
|
96 |
|
97 |
-
if st.button("💾 Save
|
98 |
save_query(query, res)
|
99 |
-
st.success("Saved
|
100 |
|
101 |
-
st.subheader("
|
102 |
for c in res["umls"]:
|
103 |
if c.get("cui"):
|
104 |
st.write(f"- **{c['name']}** ({c['cui']})")
|
105 |
|
106 |
-
st.subheader("
|
107 |
for d in res["drug_safety"]:
|
108 |
st.json(d)
|
109 |
|
110 |
-
st.subheader("
|
111 |
st.info(res["ai_summary"])
|
112 |
|
113 |
-
#
|
114 |
with tabs[1]:
|
115 |
-
st.header("Gene
|
116 |
for g in res["genes"]:
|
117 |
-
st.write(f"- **{g.get('name', g.get('geneid'))}**
|
118 |
f"{g.get('description', '')}")
|
119 |
if res["gene_disease"]:
|
120 |
-
st.markdown("### DisGeNET
|
121 |
st.json(res["gene_disease"][:15])
|
122 |
if res["mesh_defs"]:
|
123 |
-
st.markdown("### MeSH
|
124 |
for d in res["mesh_defs"]:
|
125 |
if d:
|
126 |
st.write("-", d)
|
127 |
|
128 |
-
#
|
129 |
with tabs[2]:
|
130 |
-
st.header("Clinical
|
131 |
if not res["clinical_trials"]:
|
132 |
st.info("No trials (rate-limited or none found).")
|
133 |
for t in res["clinical_trials"]:
|
134 |
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
|
135 |
-
st.write(f"Phase
|
136 |
-
f"Status
|
137 |
|
138 |
-
#
|
139 |
with tabs[3]:
|
140 |
nodes, edges, cfg = build_agraph(res["papers"],
|
141 |
-
res["umls"],
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
145 |
for n in nodes:
|
146 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
147 |
-
agraph(nodes
|
148 |
|
149 |
-
#
|
150 |
with tabs[4]:
|
151 |
G = build_nx([n.__dict__ for n in nodes],
|
152 |
[e.__dict__ for e in edges])
|
153 |
st.metric("Density", f"{get_density(G):.3f}")
|
154 |
-
st.markdown("
|
155 |
for nid, sc in get_top_hubs(G):
|
156 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
157 |
-
st.write(f"-
|
158 |
|
159 |
-
#
|
160 |
with tabs[5]:
|
161 |
years = [p["published"] for p in res["papers"] if p.get("published")]
|
162 |
if years:
|
163 |
st.plotly_chart(px.histogram(years, nbins=12,
|
164 |
title="Publication Year"))
|
165 |
|
166 |
-
# Follow-up Q-A
|
167 |
st.markdown("---")
|
168 |
-
follow = st.text_input("Ask follow-up
|
169 |
if st.button("Ask AI"):
|
170 |
ans = asyncio.run(answer_ai_question(follow,
|
171 |
context=query,
|
@@ -175,7 +183,6 @@ def render_ui():
|
|
175 |
else:
|
176 |
st.info("Enter a question and press **Run Search 🚀**")
|
177 |
|
178 |
-
|
179 |
-
# ────────────────────────────────────────────────────────────────
|
180 |
if __name__ == "__main__":
|
181 |
render_ui()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""MedGenesis AI — CPU-only, dual-LLM (OpenAI / Gemini)"""
|
3 |
+
|
4 |
+
# ────────────── FIX: create a writable Streamlit data dir ──────────────
|
5 |
+
import os, pathlib
|
6 |
+
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
7 |
+
os.environ["XDG_STATE_HOME"] = "/tmp"
|
8 |
+
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
9 |
+
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
10 |
+
# ───────────────────────────────────────────────────────────────────────
|
11 |
+
|
12 |
import asyncio, re
|
13 |
from pathlib import Path
|
14 |
|
|
|
24 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
25 |
from mcp.alerts import check_alerts
|
26 |
|
27 |
+
ROOT = Path(__file__).parent
|
28 |
+
LOGO = ROOT / "assets" / "logo.png"
|
29 |
|
30 |
+
# ──────────────── small helpers ─────────────────
|
31 |
def _pdf(papers):
|
32 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=11)
|
33 |
pdf.cell(200, 8, "MedGenesis AI – Results", ln=True, align="C"); pdf.ln(3)
|
34 |
for i, p in enumerate(papers, 1):
|
35 |
+
pdf.set_font("Arial", "B", 11)
|
36 |
+
pdf.multi_cell(0, 7, f"{i}. {p['title']}")
|
37 |
pdf.set_font("Arial", "", 9)
|
38 |
pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
|
39 |
pdf.ln(1)
|
40 |
return pdf.output(dest="S").encode("latin-1")
|
41 |
|
42 |
+
def _sidebar_workspace():
|
43 |
with st.sidebar:
|
44 |
st.header("🗂️ Workspace")
|
45 |
+
ws = get_workspace()
|
46 |
+
if not ws:
|
47 |
+
st.info("Run a search then press **Save** to populate this list.")
|
48 |
+
return
|
49 |
+
for i, item in enumerate(ws, 1):
|
50 |
with st.expander(f"{i}. {item['query']}"):
|
51 |
st.write(item["result"]["ai_summary"])
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# ──────────────── Streamlit UI ──────────────────
|
54 |
def render_ui():
|
55 |
st.set_page_config("MedGenesis AI", layout="wide")
|
56 |
+
_sidebar_workspace()
|
57 |
|
58 |
+
# header
|
59 |
+
c1, c2 = st.columns([0.15, 0.85])
|
60 |
+
with c1:
|
61 |
if LOGO.exists():
|
62 |
st.image(str(LOGO), width=105)
|
63 |
+
with c2:
|
64 |
st.markdown("## 🧬 **MedGenesis AI**")
|
65 |
st.caption("Multi-source biomedical assistant · OpenAI / Gemini")
|
66 |
|
67 |
+
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
68 |
+
query = st.text_input("Enter biomedical question",
|
69 |
+
placeholder="e.g. CRISPR glioblastoma therapy")
|
70 |
|
71 |
+
# alert check
|
72 |
if get_workspace():
|
73 |
try:
|
74 |
news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
|
75 |
if news:
|
76 |
+
st.sidebar.subheader("🔔 New papers")
|
77 |
+
for q, lst in news.items():
|
78 |
+
st.sidebar.write(f"**{q}** – {len(lst)} new")
|
|
|
79 |
except Exception as e:
|
80 |
st.sidebar.warning(f"Alert check failed: {e}")
|
81 |
|
|
|
82 |
if st.button("Run Search 🚀") and query:
|
83 |
+
with st.spinner("Collecting literature & biomedical data …"):
|
84 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
85 |
+
st.success(f"Completed with **{res['llm_used'].title()}**")
|
86 |
|
87 |
+
tabs = st.tabs(["Results", "Genes", "Trials", "Graph",
|
88 |
+
"Metrics", "Visuals"])
|
89 |
|
90 |
+
# Results -----------------------------------------------------
|
91 |
with tabs[0]:
|
92 |
for i, p in enumerate(res["papers"], 1):
|
93 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
94 |
+
st.write(p["summary"])
|
|
|
95 |
|
96 |
+
col1, col2 = st.columns(2)
|
97 |
+
with col1:
|
98 |
+
st.download_button("CSV",
|
99 |
pd.DataFrame(res["papers"]).to_csv(index=False),
|
100 |
"papers.csv", "text/csv")
|
101 |
+
with col2:
|
102 |
+
st.download_button("PDF", _pdf(res["papers"]),
|
103 |
"papers.pdf", "application/pdf")
|
104 |
|
105 |
+
if st.button("💾 Save"):
|
106 |
save_query(query, res)
|
107 |
+
st.success("Saved to workspace")
|
108 |
|
109 |
+
st.subheader("UMLS concepts")
|
110 |
for c in res["umls"]:
|
111 |
if c.get("cui"):
|
112 |
st.write(f"- **{c['name']}** ({c['cui']})")
|
113 |
|
114 |
+
st.subheader("OpenFDA safety")
|
115 |
for d in res["drug_safety"]:
|
116 |
st.json(d)
|
117 |
|
118 |
+
st.subheader("AI summary")
|
119 |
st.info(res["ai_summary"])
|
120 |
|
121 |
+
# Genes -------------------------------------------------------
|
122 |
with tabs[1]:
|
123 |
+
st.header("Gene / Variant signals")
|
124 |
for g in res["genes"]:
|
125 |
+
st.write(f"- **{g.get('name', g.get('geneid'))}** "
|
126 |
f"{g.get('description', '')}")
|
127 |
if res["gene_disease"]:
|
128 |
+
st.markdown("### DisGeNET links")
|
129 |
st.json(res["gene_disease"][:15])
|
130 |
if res["mesh_defs"]:
|
131 |
+
st.markdown("### MeSH definitions")
|
132 |
for d in res["mesh_defs"]:
|
133 |
if d:
|
134 |
st.write("-", d)
|
135 |
|
136 |
+
# Trials ------------------------------------------------------
|
137 |
with tabs[2]:
|
138 |
+
st.header("Clinical trials")
|
139 |
if not res["clinical_trials"]:
|
140 |
st.info("No trials (rate-limited or none found).")
|
141 |
for t in res["clinical_trials"]:
|
142 |
st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
|
143 |
+
st.write(f"Phase {t.get('Phase', [''])[0]} | "
|
144 |
+
f"Status {t['OverallStatus'][0]}")
|
145 |
|
146 |
+
# Graph -------------------------------------------------------
|
147 |
with tabs[3]:
|
148 |
nodes, edges, cfg = build_agraph(res["papers"],
|
149 |
+
res["umls"],
|
150 |
+
res["drug_safety"])
|
151 |
+
hl = st.text_input("Highlight node:", key="hl")
|
152 |
+
if hl:
|
153 |
+
pat = re.compile(re.escape(hl), re.I)
|
154 |
for n in nodes:
|
155 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
156 |
+
agraph(nodes, edges, cfg)
|
157 |
|
158 |
+
# Metrics -----------------------------------------------------
|
159 |
with tabs[4]:
|
160 |
G = build_nx([n.__dict__ for n in nodes],
|
161 |
[e.__dict__ for e in edges])
|
162 |
st.metric("Density", f"{get_density(G):.3f}")
|
163 |
+
st.markdown("**Top hubs**")
|
164 |
for nid, sc in get_top_hubs(G):
|
165 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
166 |
+
st.write(f"- {lab} {sc:.3f}")
|
167 |
|
168 |
+
# Visuals -----------------------------------------------------
|
169 |
with tabs[5]:
|
170 |
years = [p["published"] for p in res["papers"] if p.get("published")]
|
171 |
if years:
|
172 |
st.plotly_chart(px.histogram(years, nbins=12,
|
173 |
title="Publication Year"))
|
174 |
|
|
|
175 |
st.markdown("---")
|
176 |
+
follow = st.text_input("Ask follow-up:")
|
177 |
if st.button("Ask AI"):
|
178 |
ans = asyncio.run(answer_ai_question(follow,
|
179 |
context=query,
|
|
|
183 |
else:
|
184 |
st.info("Enter a question and press **Run Search 🚀**")
|
185 |
|
186 |
+
# entry-point
|
|
|
187 |
if __name__ == "__main__":
|
188 |
render_ui()
|