Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
|
3 |
-
|
4 |
-
# β’ Dual-LLM selector (OpenAI | Gemini)
|
5 |
-
# β’ Robust PDF export (all Unicode β Latin-1 safe)
|
6 |
-
# β’ Lazy session-state handling so a failed background
|
7 |
-
# request never kills the whole app.
|
8 |
-
# β’ New βVariantsβ tab (cBioPortal) + null-safe βGraphβ
|
9 |
-
# and βMetricsβ using the patched helpers.
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import os, pathlib, asyncio, re
|
12 |
from pathlib import Path
|
13 |
|
@@ -24,35 +26,30 @@ from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
|
24 |
|
25 |
# ββ Streamlit telemetry dir fix βββββββββββββββββββββββββββββββββββββ
|
26 |
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
27 |
-
os.environ["XDG_STATE_HOME"]
|
28 |
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
29 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
30 |
|
31 |
ROOT = Path(__file__).parent
|
32 |
LOGO = ROOT / "assets" / "logo.png"
|
33 |
|
34 |
-
# ββ PDF
|
35 |
-
def
|
36 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
37 |
|
38 |
-
def _pdf(papers):
|
39 |
pdf = FPDF()
|
40 |
pdf.set_auto_page_break(auto=True, margin=15)
|
41 |
pdf.add_page()
|
42 |
pdf.set_font("Helvetica", size=11)
|
43 |
-
pdf.cell(200, 8,
|
44 |
pdf.ln(3)
|
45 |
-
|
46 |
for i, p in enumerate(papers, 1):
|
47 |
pdf.set_font("Helvetica", "B", 11)
|
48 |
-
pdf.multi_cell(0, 7,
|
49 |
pdf.set_font("Helvetica", "", 9)
|
50 |
-
body =
|
51 |
-
|
52 |
-
f"{p['summary']}\n"
|
53 |
-
f"{p['link']}\n"
|
54 |
-
)
|
55 |
-
pdf.multi_cell(0, 6, _latin1_safe(body))
|
56 |
pdf.ln(1)
|
57 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
58 |
|
@@ -68,189 +65,192 @@ def _workspace_sidebar():
|
|
68 |
with st.expander(f"{i}. {item['query']}"):
|
69 |
st.write(item["result"]["ai_summary"])
|
70 |
|
71 |
-
# ββ UI
|
72 |
-
def render_ui():
|
73 |
st.set_page_config("MedGenesis AI", layout="wide")
|
74 |
|
75 |
-
# Session
|
76 |
-
|
77 |
-
"query_result"
|
78 |
-
"last_query"
|
79 |
-
"last_llm"
|
80 |
-
"followup_input"
|
81 |
"followup_response": None,
|
82 |
-
}
|
83 |
-
|
84 |
-
|
85 |
|
86 |
_workspace_sidebar()
|
87 |
|
88 |
-
# Header
|
89 |
c1, c2 = st.columns([0.15, 0.85])
|
90 |
with c1:
|
91 |
if LOGO.exists():
|
92 |
st.image(str(LOGO), width=105)
|
93 |
with c2:
|
94 |
st.markdown("## 𧬠**MedGenesis AI**")
|
95 |
-
st.caption("Multi-source biomedical assistant
|
96 |
|
97 |
# Controls
|
98 |
-
llm = st.radio("LLM engine", ["openai", "gemini"],
|
99 |
-
horizontal=True, index=0)
|
100 |
query = st.text_input("Enter biomedical question",
|
101 |
placeholder="e.g. CRISPR glioblastoma therapy")
|
102 |
|
103 |
-
# Run search
|
104 |
if st.button("Run Search π") and query:
|
105 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
106 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
107 |
-
st.session_state.
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
st.write(f"- **{lab}**")
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
for t in res["clinical_trials"]:
|
186 |
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
|
187 |
st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
)
|
244 |
)
|
245 |
-
|
246 |
-
|
247 |
-
st.button("Ask AI", on_click=_on_ask)
|
248 |
|
249 |
-
|
250 |
-
st.write(st.session_state.followup_response)
|
251 |
|
252 |
-
|
253 |
-
st.
|
254 |
|
255 |
|
256 |
if __name__ == "__main__":
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
MedGenesis AI β Streamlit UI (v3, June 2025)
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
β’ Dual-LLM selector (OpenAI | Gemini)
|
6 |
+
β’ Tabs: Results | Genes | Trials | Variants | Graph | Metrics | Visuals
|
7 |
+
β’ Robust PDF export (all Unicode β Latin-1 safe)
|
8 |
+
β’ Null-safe handling of any RuntimeError / HTTPStatusError objects that
|
9 |
+
slip through the async pipeline.
|
10 |
+
"""
|
11 |
+
|
12 |
+
from __future__ import annotations
|
13 |
import os, pathlib, asyncio, re
|
14 |
from pathlib import Path
|
15 |
|
|
|
26 |
|
27 |
# ββ Streamlit telemetry dir fix βββββββββββββββββββββββββββββββββββββ
|
28 |
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
29 |
+
os.environ["XDG_STATE_HOME"] = "/tmp"
|
30 |
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
31 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
32 |
|
33 |
ROOT = Path(__file__).parent
|
34 |
LOGO = ROOT / "assets" / "logo.png"
|
35 |
|
36 |
+
# ββ PDF helper ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
37 |
+
def _latin1(txt: str) -> str:
|
38 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
39 |
|
40 |
+
def _pdf(papers: list[dict]) -> bytes:
|
41 |
pdf = FPDF()
|
42 |
pdf.set_auto_page_break(auto=True, margin=15)
|
43 |
pdf.add_page()
|
44 |
pdf.set_font("Helvetica", size=11)
|
45 |
+
pdf.cell(200, 8, _latin1("MedGenesis AI β Results"), ln=True, align="C")
|
46 |
pdf.ln(3)
|
|
|
47 |
for i, p in enumerate(papers, 1):
|
48 |
pdf.set_font("Helvetica", "B", 11)
|
49 |
+
pdf.multi_cell(0, 7, _latin1(f"{i}. {p['title']}"))
|
50 |
pdf.set_font("Helvetica", "", 9)
|
51 |
+
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
|
52 |
+
pdf.multi_cell(0, 6, _latin1(body))
|
|
|
|
|
|
|
|
|
53 |
pdf.ln(1)
|
54 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
55 |
|
|
|
65 |
with st.expander(f"{i}. {item['query']}"):
|
66 |
st.write(item["result"]["ai_summary"])
|
67 |
|
68 |
+
# ββ Main UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
69 |
+
def render_ui() -> None:
|
70 |
st.set_page_config("MedGenesis AI", layout="wide")
|
71 |
|
72 |
+
# Session defaults
|
73 |
+
defaults = {
|
74 |
+
"query_result": None,
|
75 |
+
"last_query": "",
|
76 |
+
"last_llm": "openai",
|
77 |
+
"followup_input": "",
|
78 |
"followup_response": None,
|
79 |
+
}
|
80 |
+
for k, v in defaults.items():
|
81 |
+
st.session_state.setdefault(k, v)
|
82 |
|
83 |
_workspace_sidebar()
|
84 |
|
85 |
+
# Header
|
86 |
c1, c2 = st.columns([0.15, 0.85])
|
87 |
with c1:
|
88 |
if LOGO.exists():
|
89 |
st.image(str(LOGO), width=105)
|
90 |
with c2:
|
91 |
st.markdown("## 𧬠**MedGenesis AI**")
|
92 |
+
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
93 |
|
94 |
# Controls
|
95 |
+
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
|
|
96 |
query = st.text_input("Enter biomedical question",
|
97 |
placeholder="e.g. CRISPR glioblastoma therapy")
|
98 |
|
|
|
99 |
if st.button("Run Search π") and query:
|
100 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
101 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
102 |
+
st.session_state.update(
|
103 |
+
query_result=res,
|
104 |
+
last_query=query,
|
105 |
+
last_llm=llm,
|
106 |
+
followup_input="",
|
107 |
+
followup_response=None,
|
108 |
+
)
|
109 |
+
|
110 |
+
res: dict | None = st.session_state.query_result
|
111 |
+
if not res:
|
112 |
+
st.info("Enter a question and press **Run Search π**")
|
113 |
+
return
|
114 |
+
|
115 |
+
# Guarantee all expected keys exist
|
116 |
+
for k in (
|
117 |
+
"papers", "umls", "drug_safety", "genes", "mesh_defs",
|
118 |
+
"gene_disease", "clinical_trials", "variants"
|
119 |
+
):
|
120 |
+
res.setdefault(k, [])
|
121 |
+
|
122 |
+
# Tabs
|
123 |
+
tabs = st.tabs([
|
124 |
+
"Results", "Genes", "Trials", "Variants",
|
125 |
+
"Graph", "Metrics", "Visuals"
|
126 |
+
])
|
127 |
+
|
128 |
+
# ---- Results ----------------------------------------------------
|
129 |
+
with tabs[0]:
|
130 |
+
st.subheader("Literature")
|
131 |
+
for i, p in enumerate(res["papers"], 1):
|
132 |
+
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
133 |
+
st.write(p["summary"])
|
134 |
+
col1, col2 = st.columns(2)
|
135 |
+
with col1:
|
136 |
+
st.download_button(
|
137 |
+
"CSV",
|
138 |
+
pd.DataFrame(res["papers"]).to_csv(index=False),
|
139 |
+
"papers.csv",
|
140 |
+
"text/csv",
|
141 |
+
)
|
142 |
+
with col2:
|
143 |
+
st.download_button("PDF", _pdf(res["papers"]),
|
144 |
+
"papers.pdf", "application/pdf")
|
145 |
+
if st.button("πΎ Save"):
|
146 |
+
save_query(st.session_state.last_query, res)
|
147 |
+
st.success("Saved to workspace")
|
148 |
+
|
149 |
+
st.subheader("UMLS concepts")
|
150 |
+
for c in res["umls"]:
|
151 |
+
if isinstance(c, dict) and c.get("cui"):
|
152 |
+
st.write(f"- **{c['name']}** ({c['cui']})")
|
153 |
+
|
154 |
+
st.subheader("OpenFDA safety signals")
|
155 |
+
for d in res["drug_safety"]:
|
156 |
+
st.json(d)
|
157 |
+
|
158 |
+
st.subheader("AI summary")
|
159 |
+
st.info(res["ai_summary"])
|
160 |
+
|
161 |
+
# ---- Genes ------------------------------------------------------
|
162 |
+
with tabs[1]:
|
163 |
+
st.header("Gene / Variant signals")
|
164 |
+
clean = [g for g in res["genes"] if isinstance(g, dict)]
|
165 |
+
if not clean:
|
166 |
+
st.info("No gene metadata (API may be rate-limited).")
|
167 |
+
else:
|
168 |
+
for g in clean:
|
169 |
+
lab = g.get("name") or g.get("symbol") or str(g.get("geneid", ""))
|
170 |
st.write(f"- **{lab}**")
|
171 |
+
|
172 |
+
if res["gene_disease"]:
|
173 |
+
st.markdown("### DisGeNET associations")
|
174 |
+
st.json(res["gene_disease"][:15])
|
175 |
+
|
176 |
+
if res["mesh_defs"]:
|
177 |
+
st.markdown("### MeSH definitions")
|
178 |
+
for d in res["mesh_defs"]:
|
179 |
+
if d:
|
180 |
+
st.write("-", d)
|
181 |
+
|
182 |
+
# ---- Trials -----------------------------------------------------
|
183 |
+
with tabs[2]:
|
184 |
+
st.header("Clinical trials")
|
185 |
+
if not res["clinical_trials"]:
|
186 |
+
st.info("No trials (rate-limited or none found).")
|
187 |
+
else:
|
188 |
for t in res["clinical_trials"]:
|
189 |
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
|
190 |
st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")
|
191 |
|
192 |
+
# ---- Variants ---------------------------------------------------
|
193 |
+
with tabs[3]:
|
194 |
+
st.header("Cancer variants (cBioPortal)")
|
195 |
+
if not res["variants"]:
|
196 |
+
st.info("No variant data.")
|
197 |
+
else:
|
198 |
+
st.json(res["variants"][:50])
|
199 |
+
|
200 |
+
# ---- Graph ------------------------------------------------------
|
201 |
+
with tabs[4]:
|
202 |
+
nodes, edges, cfg = build_agraph(
|
203 |
+
res["papers"], res["umls"], res["drug_safety"]
|
204 |
+
)
|
205 |
+
hl = st.text_input("Highlight node:", key="hl")
|
206 |
+
if hl:
|
207 |
+
pat = re.compile(re.escape(hl), re.I)
|
208 |
+
for n in nodes:
|
209 |
+
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
210 |
+
agraph(nodes, edges, cfg)
|
211 |
+
|
212 |
+
# ---- Metrics ----------------------------------------------------
|
213 |
+
with tabs[5]:
|
214 |
+
G = build_nx(
|
215 |
+
[n.__dict__ for n in nodes],
|
216 |
+
[e.__dict__ for e in edges],
|
217 |
+
)
|
218 |
+
st.metric("Density", f"{get_density(G):.3f}")
|
219 |
+
st.markdown("**Top hubs**")
|
220 |
+
for nid, sc in get_top_hubs(G):
|
221 |
+
lab = next((n.label for n in nodes if n.id == nid), nid)
|
222 |
+
st.write(f"- {lab} {sc:.3f}")
|
223 |
+
|
224 |
+
# ---- Visuals ----------------------------------------------------
|
225 |
+
with tabs[6]:
|
226 |
+
years = [p.get("published", "")[:4] for p in res["papers"] if p.get("published")]
|
227 |
+
if years:
|
228 |
+
st.plotly_chart(px.histogram(years, nbins=12,
|
229 |
+
title="Publication Year"))
|
230 |
+
|
231 |
+
# ---- Follow-up QA ----------------------------------------------
|
232 |
+
st.markdown("---")
|
233 |
+
st.text_input("Ask follow-up question:", key="followup_input")
|
234 |
+
|
235 |
+
def _on_ask():
|
236 |
+
q = st.session_state.followup_input.strip()
|
237 |
+
if not q:
|
238 |
+
st.warning("Please type a question first.")
|
239 |
+
return
|
240 |
+
with st.spinner("Querying LLM β¦"):
|
241 |
+
ans = asyncio.run(
|
242 |
+
answer_ai_question(
|
243 |
+
q,
|
244 |
+
context=st.session_state.last_query,
|
245 |
+
llm=st.session_state.last_llm,
|
|
|
246 |
)
|
247 |
+
)
|
248 |
+
st.session_state.followup_response = ans["answer"]
|
|
|
249 |
|
250 |
+
st.button("Ask AI", on_click=_on_ask)
|
|
|
251 |
|
252 |
+
if st.session_state.followup_response:
|
253 |
+
st.write(st.session_state.followup_response)
|
254 |
|
255 |
|
256 |
if __name__ == "__main__":
|