Update mcp/graph_utils.py
Browse files- mcp/graph_utils.py +6 -55
mcp/graph_utils.py
CHANGED
@@ -1,69 +1,20 @@
|
|
1 |
"""
|
2 |
-
|
3 |
-
|
4 |
-
Key features
|
5 |
-
────────────
|
6 |
-
• Accepts edge dictionaries in either Streamlit-agraph or PyVis style:
|
7 |
-
{"source": "n1", "target": "n2"} ← agraph
|
8 |
-
{"from": "n1", "to": "n2"} ← PyVis
|
9 |
-
• Silently skips malformed edges (no KeyError).
|
10 |
-
• Provides three public helpers:
|
11 |
-
build_nx(nodes, edges) → networkx.Graph
|
12 |
-
get_top_hubs(G, k=5) → List[(node_id, degree_centrality)]
|
13 |
-
get_density(G) → float (0–1)
|
14 |
"""
|
15 |
-
|
16 |
-
from __future__ import annotations
|
17 |
-
from typing import List, Dict, Tuple
|
18 |
import networkx as nx
|
|
|
19 |
|
20 |
-
|
21 |
-
# ────────────────────────────────────────────────────────────────────
|
22 |
-
# Internal helpers
|
23 |
-
# ────────────────────────────────────────────────────────────────────
|
24 |
-
def _edge_ends(e: Dict) -> Tuple[str, str] | None:
|
25 |
-
"""Return (src, dst) tuple if both ends exist; else None."""
|
26 |
-
src = e.get("source") or e.get("from")
|
27 |
-
dst = e.get("target") or e.get("to")
|
28 |
-
if src and dst:
|
29 |
-
return src, dst
|
30 |
-
return None
|
31 |
-
|
32 |
-
|
33 |
-
# ────────────────────────────────────────────────────────────────────
|
34 |
-
# Public API
|
35 |
-
# ────────────────────────────────────────────────────────────────────
|
36 |
def build_nx(nodes: List[Dict], edges: List[Dict]) -> nx.Graph:
|
37 |
-
"""
|
38 |
-
Convert agraph / PyVis node+edge dicts into a NetworkX Graph.
|
39 |
-
|
40 |
-
Nodes: must contain "id" (a unique string)
|
41 |
-
Edges: accepted shapes → {"source":, "target":} or {"from":, "to":}
|
42 |
-
"""
|
43 |
G = nx.Graph()
|
44 |
-
|
45 |
-
# Add nodes with label attribute (used by Metrics tab)
|
46 |
for n in nodes:
|
47 |
-
G.add_node(n["id"]
|
48 |
-
|
49 |
-
# Add edges (skip malformed)
|
50 |
for e in edges:
|
51 |
-
|
52 |
-
if ends:
|
53 |
-
G.add_edge(*ends)
|
54 |
-
|
55 |
return G
|
56 |
|
|
|
|
|
57 |
|
58 |
def get_top_hubs(G: nx.Graph, k: int = 5) -> List[Tuple[str, float]]:
|
59 |
-
"""
|
60 |
-
Return top-k nodes by degree-centrality.
|
61 |
-
Example output: [('TP53', 0.42), ('EGFR', 0.36), ...]
|
62 |
-
"""
|
63 |
dc = nx.degree_centrality(G)
|
64 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
65 |
-
|
66 |
-
|
67 |
-
def get_density(G: nx.Graph) -> float:
|
68 |
-
"""Graph density in [0, 1]."""
|
69 |
-
return nx.density(G)
|
|
|
1 |
"""
|
2 |
+
Minimal NetworkX helpers for MedGenesis graphs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"""
|
|
|
|
|
|
|
4 |
import networkx as nx
|
5 |
+
from typing import List, Dict, Tuple
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def build_nx(nodes: List[Dict], edges: List[Dict]) -> nx.Graph:
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
G = nx.Graph()
|
|
|
|
|
9 |
for n in nodes:
|
10 |
+
G.add_node(n["id"])
|
|
|
|
|
11 |
for e in edges:
|
12 |
+
G.add_edge(e["source"], e["target"])
|
|
|
|
|
|
|
13 |
return G
|
14 |
|
15 |
+
def get_density(G: nx.Graph) -> float:
|
16 |
+
return nx.density(G)
|
17 |
|
18 |
def get_top_hubs(G: nx.Graph, k: int = 5) -> List[Tuple[str, float]]:
|
|
|
|
|
|
|
|
|
19 |
dc = nx.degree_centrality(G)
|
20 |
return sorted(dc.items(), key=lambda x: x[1], reverse=True)[:k]
|
|
|
|
|
|
|
|
|
|