Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# MedGenesis AI β Streamlit UI (OpenAI + Gemini, CPU-only)
|
4 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
5 |
import os, pathlib, asyncio, re
|
6 |
from pathlib import Path
|
7 |
-
from datetime import datetime
|
8 |
|
9 |
import streamlit as st
|
10 |
import pandas as pd
|
@@ -12,214 +9,174 @@ import plotly.express as px
|
|
12 |
from fpdf import FPDF
|
13 |
from streamlit_agraph import agraph
|
14 |
|
15 |
-
|
16 |
-
from mcp.
|
17 |
-
from mcp.workspace import get_workspace, save_query
|
18 |
from mcp.knowledge_graph import build_agraph
|
19 |
-
from mcp.graph_metrics
|
20 |
-
from mcp.alerts
|
21 |
|
22 |
-
#
|
23 |
-
os.environ["STREAMLIT_DATA_DIR"]
|
24 |
-
os.environ["XDG_STATE_HOME"]
|
25 |
-
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"]
|
26 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
27 |
|
28 |
ROOT = Path(__file__).parent
|
29 |
LOGO = ROOT / "assets" / "logo.png"
|
30 |
|
31 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
32 |
-
# Small util helpers
|
33 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
def _latin1_safe(txt: str) -> str:
|
35 |
-
"""Replace non-Latin-1 chars β keeps FPDF happy."""
|
36 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
37 |
|
38 |
-
|
39 |
-
def _pdf(papers: list[dict]) -> bytes:
|
40 |
pdf = FPDF()
|
41 |
pdf.set_auto_page_break(auto=True, margin=15)
|
42 |
pdf.add_page()
|
43 |
pdf.set_font("Helvetica", size=11)
|
44 |
-
pdf.cell(200, 8, _latin1_safe("MedGenesis AI β
|
45 |
-
ln=True, align="C")
|
46 |
pdf.ln(3)
|
47 |
-
|
48 |
for i, p in enumerate(papers, 1):
|
49 |
pdf.set_font("Helvetica", "B", 11)
|
50 |
-
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p
|
51 |
pdf.set_font("Helvetica", "", 9)
|
52 |
-
body = (
|
53 |
-
f"{p['authors']}\n"
|
54 |
-
f"{p['summary']}\n"
|
55 |
-
f"{p['link']}\n"
|
56 |
-
)
|
57 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
58 |
pdf.ln(1)
|
59 |
-
|
60 |
-
# FPDF already returns latin-1 bytes β no extra encode needed
|
61 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
62 |
|
63 |
-
|
64 |
-
def _workspace_sidebar() -> None:
|
65 |
with st.sidebar:
|
66 |
-
st.header("
|
67 |
ws = get_workspace()
|
68 |
if not ws:
|
69 |
st.info("Run a search then press **Save** to populate this list.")
|
70 |
return
|
71 |
for i, item in enumerate(ws, 1):
|
72 |
with st.expander(f"{i}. {item['query']}"):
|
73 |
-
st.write(item["result"]
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
# Main Streamlit UI
|
78 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
79 |
-
def render_ui() -> None:
|
80 |
st.set_page_config("MedGenesis AI", layout="wide")
|
81 |
|
82 |
-
#
|
83 |
-
for k, v in
|
84 |
-
"query_result"
|
85 |
-
"
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
}.items():
|
90 |
-
st.session_state.setdefault(k, v)
|
91 |
|
92 |
_workspace_sidebar()
|
93 |
-
|
94 |
-
|
95 |
-
with col_logo:
|
96 |
if LOGO.exists():
|
97 |
-
st.image(LOGO, width=
|
98 |
-
with
|
99 |
st.markdown("## 𧬠**MedGenesis AI**")
|
100 |
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
101 |
|
102 |
-
llm
|
103 |
-
query = st.text_input("Enter biomedical question",
|
104 |
-
placeholder="e.g. CRISPR glioblastoma therapy")
|
105 |
|
106 |
-
#
|
107 |
-
|
108 |
-
if
|
109 |
try:
|
110 |
-
news = asyncio.run(check_alerts(
|
111 |
if news:
|
112 |
with st.sidebar:
|
113 |
st.subheader("π New papers")
|
114 |
for q, lnks in news.items():
|
115 |
st.write(f"**{q}** β {len(lnks)} new")
|
116 |
except Exception:
|
117 |
-
pass
|
118 |
|
119 |
-
|
120 |
-
if st.button("Run Search π") and query.strip():
|
121 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
122 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
123 |
-
|
124 |
-
|
125 |
-
st.session_state.
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
followup_input="",
|
130 |
-
followup_response=None,
|
131 |
-
)
|
132 |
-
st.success(f"Completed with **{res['llm_used'].title()}**")
|
133 |
|
134 |
res = st.session_state.query_result
|
135 |
if not res:
|
136 |
-
st.info("Enter a
|
137 |
return
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
"Graph", "Metrics", "Visuals"])
|
142 |
-
|
143 |
-
# 1) Results -------------------------------------------------------
|
144 |
with tabs[0]:
|
145 |
-
for i, p in enumerate(res
|
146 |
-
st.markdown(
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
st.
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
st.download_button(
|
155 |
-
"CSV",
|
156 |
-
pd.DataFrame(res["papers"]).to_csv(index=False),
|
157 |
-
"papers.csv",
|
158 |
-
"text/csv",
|
159 |
-
)
|
160 |
-
with c_pdf:
|
161 |
-
st.download_button("PDF", _pdf(res["papers"]),
|
162 |
-
"papers.pdf", "application/pdf")
|
163 |
-
|
164 |
if st.button("πΎ Save"):
|
165 |
save_query(st.session_state.last_query, res)
|
166 |
st.success("Saved to workspace")
|
167 |
-
|
168 |
st.subheader("UMLS concepts")
|
169 |
-
for c in (
|
170 |
if isinstance(c, dict) and c.get("cui"):
|
171 |
-
st.write(f"- **{c
|
172 |
-
|
173 |
st.subheader("OpenFDA safety signals")
|
174 |
-
|
175 |
-
st.json(d)
|
176 |
-
|
177 |
st.subheader("AI summary")
|
178 |
-
st.info(res
|
179 |
|
180 |
-
#
|
181 |
with tabs[1]:
|
182 |
st.header("Gene / Variant signals")
|
183 |
-
|
184 |
-
|
185 |
-
if isinstance(g, dict) and (g.get("symbol") or g.get("name"))
|
186 |
-
]
|
187 |
-
if not genes_list:
|
188 |
st.info("No gene hits (rate-limited or none found).")
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
193 |
st.markdown("### DisGeNET associations")
|
194 |
-
|
195 |
-
|
196 |
-
st.json(ok[:15])
|
197 |
-
|
198 |
-
defs = [d for d in res["mesh_defs"] if isinstance(d, str) and d]
|
199 |
-
if defs:
|
200 |
st.markdown("### MeSH definitions")
|
201 |
-
for d in
|
202 |
-
|
|
|
203 |
|
204 |
-
#
|
205 |
with tabs[2]:
|
206 |
st.header("Clinical trials")
|
207 |
-
|
208 |
-
if not
|
209 |
st.info("No trials (rate-limited or none found).")
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
219 |
with tabs[3]:
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
hl = st.text_input("Highlight node:", key="hl")
|
224 |
if hl:
|
225 |
pat = re.compile(re.escape(hl), re.I)
|
@@ -227,60 +184,38 @@ def render_ui() -> None:
|
|
227 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
228 |
agraph(nodes, edges, cfg)
|
229 |
|
230 |
-
#
|
231 |
-
with tabs[
|
232 |
-
|
233 |
-
|
234 |
-
[e.__dict__ for e in edges],
|
235 |
-
)
|
236 |
st.metric("Density", f"{get_density(G):.3f}")
|
237 |
st.markdown("**Top hubs**")
|
238 |
-
for nid, sc in get_top_hubs(G
|
239 |
-
|
240 |
-
st.write(f"- {
|
241 |
|
242 |
-
#
|
243 |
-
with tabs[
|
244 |
-
years = [
|
245 |
-
p["published"][:4] for p in res["papers"]
|
246 |
-
if p.get("published") and len(p["published"]) >= 4
|
247 |
-
]
|
248 |
if years:
|
249 |
-
st.plotly_chart(
|
250 |
-
px.histogram(
|
251 |
-
years, nbins=min(15, len(set(years))),
|
252 |
-
title="Publication Year"
|
253 |
-
)
|
254 |
-
)
|
255 |
|
256 |
-
#
|
257 |
st.markdown("---")
|
258 |
-
st.text_input("Ask follow
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
q,
|
271 |
-
context=st.session_state.last_query,
|
272 |
-
llm=st.session_state.last_llm)
|
273 |
-
)
|
274 |
-
st.session_state.followup_response = (
|
275 |
-
ans.get("answer") or "LLM unavailable or quota exceeded."
|
276 |
-
)
|
277 |
-
|
278 |
-
st.button("Ask AI", on_click=_on_ask)
|
279 |
-
|
280 |
if st.session_state.followup_response:
|
281 |
st.write(st.session_state.followup_response)
|
282 |
|
283 |
-
|
284 |
-
# ββ entry-point βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
285 |
if __name__ == "__main__":
|
286 |
render_ui()
|
|
|
1 |
+
# app.py - MedGenesis AI Streamlit app (OpenAI/Gemini)
|
2 |
+
|
|
|
|
|
3 |
import os, pathlib, asyncio, re
|
4 |
from pathlib import Path
|
|
|
5 |
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
|
|
9 |
from fpdf import FPDF
|
10 |
from streamlit_agraph import agraph
|
11 |
|
12 |
+
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
13 |
+
from mcp.workspace import get_workspace, save_query
|
|
|
14 |
from mcp.knowledge_graph import build_agraph
|
15 |
+
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
16 |
+
from mcp.alerts import check_alerts
|
17 |
|
18 |
+
# --- Fix Streamlit temp dir ---
|
19 |
+
os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit"
|
20 |
+
os.environ["XDG_STATE_HOME"] = "/tmp"
|
21 |
+
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
22 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
23 |
|
24 |
ROOT = Path(__file__).parent
|
25 |
LOGO = ROOT / "assets" / "logo.png"
|
26 |
|
|
|
|
|
|
|
27 |
def _latin1_safe(txt: str) -> str:
|
|
|
28 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
29 |
|
30 |
+
def _pdf(papers):
|
|
|
31 |
pdf = FPDF()
|
32 |
pdf.set_auto_page_break(auto=True, margin=15)
|
33 |
pdf.add_page()
|
34 |
pdf.set_font("Helvetica", size=11)
|
35 |
+
pdf.cell(200, 8, _latin1_safe("MedGenesis AI β Results"), ln=True, align="C")
|
|
|
36 |
pdf.ln(3)
|
|
|
37 |
for i, p in enumerate(papers, 1):
|
38 |
pdf.set_font("Helvetica", "B", 11)
|
39 |
+
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title', '')}"))
|
40 |
pdf.set_font("Helvetica", "", 9)
|
41 |
+
body = f"{p.get('authors','')}\n{p.get('summary','')}\n{p.get('link','')}\n"
|
|
|
|
|
|
|
|
|
42 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
43 |
pdf.ln(1)
|
|
|
|
|
44 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
45 |
|
46 |
+
def _workspace_sidebar():
|
|
|
47 |
with st.sidebar:
|
48 |
+
st.header("ποΈ Workspace")
|
49 |
ws = get_workspace()
|
50 |
if not ws:
|
51 |
st.info("Run a search then press **Save** to populate this list.")
|
52 |
return
|
53 |
for i, item in enumerate(ws, 1):
|
54 |
with st.expander(f"{i}. {item['query']}"):
|
55 |
+
st.write(item["result"].get("ai_summary", ""))
|
|
|
56 |
|
57 |
+
def render_ui():
|
|
|
|
|
|
|
58 |
st.set_page_config("MedGenesis AI", layout="wide")
|
59 |
|
60 |
+
# Session state
|
61 |
+
for k, v in [
|
62 |
+
("query_result", None), ("followup_input", ""),
|
63 |
+
("followup_response", None), ("last_query", ""), ("last_llm", "")
|
64 |
+
]:
|
65 |
+
if k not in st.session_state:
|
66 |
+
st.session_state[k] = v
|
|
|
|
|
67 |
|
68 |
_workspace_sidebar()
|
69 |
+
c1, c2 = st.columns([0.15, 0.85])
|
70 |
+
with c1:
|
|
|
71 |
if LOGO.exists():
|
72 |
+
st.image(str(LOGO), width=105)
|
73 |
+
with c2:
|
74 |
st.markdown("## 𧬠**MedGenesis AI**")
|
75 |
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
76 |
|
77 |
+
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
78 |
+
query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy")
|
|
|
79 |
|
80 |
+
# Alerts
|
81 |
+
wsq = get_workspace()
|
82 |
+
if wsq:
|
83 |
try:
|
84 |
+
news = asyncio.run(check_alerts([w["query"] for w in wsq]))
|
85 |
if news:
|
86 |
with st.sidebar:
|
87 |
st.subheader("π New papers")
|
88 |
for q, lnks in news.items():
|
89 |
st.write(f"**{q}** β {len(lnks)} new")
|
90 |
except Exception:
|
91 |
+
pass
|
92 |
|
93 |
+
if st.button("Run Search π") and query:
|
|
|
94 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
95 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
96 |
+
st.success(f"Completed with **{res.get('llm_used','LLM').title()}**")
|
97 |
+
st.session_state.query_result = res
|
98 |
+
st.session_state.last_query = query
|
99 |
+
st.session_state.last_llm = llm
|
100 |
+
st.session_state.followup_input = ""
|
101 |
+
st.session_state.followup_response = None
|
|
|
|
|
|
|
|
|
102 |
|
103 |
res = st.session_state.query_result
|
104 |
if not res:
|
105 |
+
st.info("Enter a question and press **Run Search π**")
|
106 |
return
|
107 |
|
108 |
+
tabs = st.tabs(["Results", "Genes", "Trials", "Variants", "Graph", "Metrics", "Visuals"])
|
109 |
+
# --------------- Results Tab ---------------
|
|
|
|
|
|
|
110 |
with tabs[0]:
|
111 |
+
for i, p in enumerate(res.get("papers", []), 1):
|
112 |
+
st.markdown(f"**{i}. [{p.get('title','')}]({p.get('link','')})** *{p.get('authors','')}*")
|
113 |
+
st.write(p.get("summary", ""))
|
114 |
+
col1, col2 = st.columns(2)
|
115 |
+
with col1:
|
116 |
+
st.download_button("CSV", pd.DataFrame(res.get("papers", [])).to_csv(index=False),
|
117 |
+
"papers.csv", "text/csv")
|
118 |
+
with col2:
|
119 |
+
st.download_button("PDF", _pdf(res.get("papers", [])), "papers.pdf", "application/pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if st.button("πΎ Save"):
|
121 |
save_query(st.session_state.last_query, res)
|
122 |
st.success("Saved to workspace")
|
|
|
123 |
st.subheader("UMLS concepts")
|
124 |
+
for c in res.get("umls", []):
|
125 |
if isinstance(c, dict) and c.get("cui"):
|
126 |
+
st.write(f"- **{c.get('name','')}** ({c.get('cui')})")
|
|
|
127 |
st.subheader("OpenFDA safety signals")
|
128 |
+
st.json(res.get("drug_safety", []))
|
|
|
|
|
129 |
st.subheader("AI summary")
|
130 |
+
st.info(res.get("ai_summary", ""))
|
131 |
|
132 |
+
# --------------- Genes Tab ---------------
|
133 |
with tabs[1]:
|
134 |
st.header("Gene / Variant signals")
|
135 |
+
genes = res.get("genes", [])
|
136 |
+
if not genes:
|
|
|
|
|
|
|
137 |
st.info("No gene hits (rate-limited or none found).")
|
138 |
+
else:
|
139 |
+
for g in genes:
|
140 |
+
if isinstance(g, dict):
|
141 |
+
lab = g.get("name") or g.get("symbol") or g.get("geneid")
|
142 |
+
st.write(f"- **{lab}** {g.get('description','')}")
|
143 |
+
if res.get("gene_disease"):
|
144 |
st.markdown("### DisGeNET associations")
|
145 |
+
st.json(res.get("gene_disease")[:15])
|
146 |
+
if res.get("mesh_defs"):
|
|
|
|
|
|
|
|
|
147 |
st.markdown("### MeSH definitions")
|
148 |
+
for d in res["mesh_defs"]:
|
149 |
+
if d:
|
150 |
+
st.write("-", d)
|
151 |
|
152 |
+
# --------------- Trials Tab ---------------
|
153 |
with tabs[2]:
|
154 |
st.header("Clinical trials")
|
155 |
+
trials = res.get("clinical_trials", [])
|
156 |
+
if not trials:
|
157 |
st.info("No trials (rate-limited or none found).")
|
158 |
+
else:
|
159 |
+
for t in trials:
|
160 |
+
nct = t.get("nctId") or (t.get("NCTId", [""])[0] if isinstance(t.get("NCTId"), list) else "")
|
161 |
+
title = t.get("briefTitle") or (t.get("BriefTitle", [""])[0] if isinstance(t.get("BriefTitle"), list) else "")
|
162 |
+
phase = t.get("phase") or (t.get("Phase", [""])[0] if isinstance(t.get("Phase"), list) else "")
|
163 |
+
status = t.get("status") or (t.get("OverallStatus", [""])[0] if isinstance(t.get("OverallStatus"), list) else "")
|
164 |
+
st.markdown(f"**{nct}** β {title}")
|
165 |
+
st.write(f"Phase {phase} | Status {status}")
|
166 |
+
|
167 |
+
# --------------- Variants Tab ---------------
|
168 |
with tabs[3]:
|
169 |
+
st.header("Cancer variants (cBioPortal)")
|
170 |
+
variants = res.get("variants", [])
|
171 |
+
if not variants:
|
172 |
+
st.info("No variant data.")
|
173 |
+
else:
|
174 |
+
for v in variants:
|
175 |
+
st.json(v)
|
176 |
+
|
177 |
+
# --------------- Graph Tab ---------------
|
178 |
+
with tabs[4]:
|
179 |
+
nodes, edges, cfg = build_agraph(res.get("papers", []), res.get("umls", []), res.get("drug_safety", []))
|
180 |
hl = st.text_input("Highlight node:", key="hl")
|
181 |
if hl:
|
182 |
pat = re.compile(re.escape(hl), re.I)
|
|
|
184 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
185 |
agraph(nodes, edges, cfg)
|
186 |
|
187 |
+
# --------------- Metrics Tab ---------------
|
188 |
+
with tabs[5]:
|
189 |
+
nodes, edges, _ = build_agraph(res.get("papers", []), res.get("umls", []), res.get("drug_safety", []))
|
190 |
+
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
|
|
|
|
191 |
st.metric("Density", f"{get_density(G):.3f}")
|
192 |
st.markdown("**Top hubs**")
|
193 |
+
for nid, sc in get_top_hubs(G):
|
194 |
+
lab = next((n.label for n in nodes if n.id == nid), nid)
|
195 |
+
st.write(f"- {lab} {sc:.3f}")
|
196 |
|
197 |
+
# --------------- Visuals Tab ---------------
|
198 |
+
with tabs[6]:
|
199 |
+
years = [p.get("published", "") for p in res.get("papers", []) if p.get("published")]
|
|
|
|
|
|
|
200 |
if years:
|
201 |
+
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
# --------------- Follow-up Q&A ---------------
|
204 |
st.markdown("---")
|
205 |
+
st.text_input("Ask followβup question:", key="followup_input")
|
206 |
+
def handle_followup():
|
207 |
+
follow = st.session_state.followup_input
|
208 |
+
if follow.strip():
|
209 |
+
ans = asyncio.run(answer_ai_question(
|
210 |
+
follow,
|
211 |
+
context=st.session_state.last_query,
|
212 |
+
llm=st.session_state.last_llm))
|
213 |
+
st.session_state.followup_response = ans.get("answer", "No answer.")
|
214 |
+
else:
|
215 |
+
st.session_state.followup_response = None
|
216 |
+
st.button("Ask AI", on_click=handle_followup)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
if st.session_state.followup_response:
|
218 |
st.write(st.session_state.followup_response)
|
219 |
|
|
|
|
|
220 |
if __name__ == "__main__":
|
221 |
render_ui()
|