Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import os, pathlib, asyncio, re
|
5 |
from pathlib import Path
|
|
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
8 |
import plotly.express as px
|
@@ -12,38 +12,44 @@ from streamlit_agraph import agraph
|
|
12 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
13 |
from mcp.workspace import get_workspace, save_query
|
14 |
from mcp.knowledge_graph import build_agraph
|
15 |
-
from mcp.
|
16 |
from mcp.alerts import check_alerts
|
17 |
|
18 |
-
#
|
19 |
-
os.environ
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
23 |
|
24 |
ROOT = Path(__file__).parent
|
25 |
LOGO = ROOT / "assets" / "logo.png"
|
26 |
|
27 |
-
#
|
28 |
-
def _latin1(txt: str) -> str:
|
29 |
-
return txt.encode("latin-1", "replace").decode("latin-1")
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
32 |
pdf = FPDF()
|
|
|
33 |
pdf.add_page()
|
34 |
pdf.set_font("Helvetica", size=11)
|
35 |
-
pdf.cell(200, 8,
|
36 |
pdf.ln(3)
|
37 |
for i, p in enumerate(papers, 1):
|
38 |
pdf.set_font("Helvetica", "B", 11)
|
39 |
-
pdf.multi_cell(0, 7,
|
40 |
-
pdf.set_font("Helvetica",
|
41 |
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
|
42 |
-
pdf.multi_cell(0, 6,
|
|
|
43 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
47 |
with st.sidebar:
|
48 |
st.header("ποΈ Workspace")
|
49 |
ws = get_workspace()
|
@@ -54,167 +60,107 @@ def _sidebar_workspace():
|
|
54 |
with st.expander(f"{i}. {item['query']}"):
|
55 |
st.write(item["result"]["ai_summary"])
|
56 |
|
57 |
-
#
|
|
|
58 |
def render_ui():
|
59 |
st.set_page_config("MedGenesis AI", layout="wide")
|
|
|
60 |
|
61 |
-
#
|
62 |
-
st.session_state.setdefault("result", None)
|
63 |
-
st.session_state.setdefault("last_query", "")
|
64 |
-
st.session_state.setdefault("last_llm", "")
|
65 |
-
st.session_state.setdefault("followup", "")
|
66 |
-
st.session_state.setdefault("answer", "")
|
67 |
-
|
68 |
-
_sidebar_workspace()
|
69 |
-
|
70 |
c1, c2 = st.columns([0.15, 0.85])
|
71 |
-
if LOGO.exists():
|
72 |
-
|
73 |
-
c2
|
|
|
|
|
74 |
|
75 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
76 |
-
query = st.text_input("Enter biomedical question",
|
77 |
-
|
78 |
-
|
79 |
-
# Alerts
|
80 |
-
if get_workspace():
|
81 |
-
try:
|
82 |
-
news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
|
83 |
-
if news:
|
84 |
-
with st.sidebar:
|
85 |
-
st.subheader("π New papers")
|
86 |
-
for q, lnks in news.items():
|
87 |
-
st.write(f"**{q}** β {len(lnks)} new")
|
88 |
-
except Exception:
|
89 |
-
pass
|
90 |
-
|
91 |
-
# Run search
|
92 |
-
if st.button("Run Search π") and query.strip():
|
93 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
94 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
95 |
-
st.session_state.update(
|
96 |
-
result=res, last_query=query, last_llm=llm,
|
97 |
-
followup="", answer=""
|
98 |
-
)
|
99 |
st.success(f"Completed with **{res['llm_used'].title()}**")
|
|
|
|
|
|
|
100 |
|
101 |
-
res = st.session_state.result
|
102 |
if not res:
|
103 |
st.info("Enter a question and press **Run Search π**")
|
104 |
return
|
105 |
|
106 |
-
|
107 |
-
tabs = st.tabs(
|
108 |
-
["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"]
|
109 |
-
)
|
110 |
|
111 |
-
#
|
112 |
with tabs[0]:
|
113 |
for i, p in enumerate(res["papers"], 1):
|
114 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
115 |
st.write(p["summary"])
|
116 |
c1, c2 = st.columns(2)
|
117 |
-
c1
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
"papers.pdf", "application/pdf")
|
122 |
if st.button("πΎ Save"):
|
123 |
-
save_query(
|
124 |
st.success("Saved to workspace")
|
125 |
-
|
126 |
-
st.subheader("UMLS concepts")
|
127 |
-
for c in res["umls"]:
|
128 |
-
if isinstance(c, dict) and c.get("cui"):
|
129 |
-
st.write(f"- **{c['name']}** ({c['cui']})")
|
130 |
-
|
131 |
-
st.subheader("OpenFDA safety")
|
132 |
-
for d in res["drug_safety"]:
|
133 |
-
st.json(d)
|
134 |
-
|
135 |
st.subheader("AI summary")
|
136 |
st.info(res["ai_summary"])
|
137 |
|
138 |
-
#
|
139 |
with tabs[1]:
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
res["expr_atlas"][0].get("expressions", [])[:10],
|
151 |
-
x="assayName", y="value", title="Top tissues (Expression Atlas)"
|
152 |
-
))
|
153 |
-
|
154 |
-
if res["cbio_variants"]:
|
155 |
-
st.markdown("### cBioPortal cohort variants")
|
156 |
-
st.json(res["cbio_variants"][0][:15])
|
157 |
-
|
158 |
-
# Trials
|
159 |
with tabs[2]:
|
160 |
st.header("Clinical trials")
|
161 |
if not res["clinical_trials"]:
|
162 |
-
st.info("No trials (rate
|
163 |
for t in res["clinical_trials"]:
|
164 |
-
st.markdown(f"**{t['
|
165 |
-
st.write(f"Phase {t.get('
|
166 |
-
f"Status {t['OverallStatus'][0]}")
|
167 |
|
168 |
-
#
|
169 |
with tabs[3]:
|
170 |
-
nodes, edges, cfg = build_agraph(
|
171 |
-
|
172 |
-
)
|
173 |
-
hl = st.text_input("Highlight node:", key="hl")
|
174 |
if hl:
|
175 |
pat = re.compile(re.escape(hl), re.I)
|
176 |
for n in nodes:
|
177 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
178 |
agraph(nodes, edges, cfg)
|
179 |
|
180 |
-
#
|
181 |
with tabs[4]:
|
182 |
-
G = build_nx([n.__dict__ for n in nodes],
|
183 |
-
[e.__dict__ for e in edges])
|
184 |
st.metric("Density", f"{get_density(G):.3f}")
|
185 |
-
st.markdown("**Top hubs**")
|
186 |
for nid, sc in get_top_hubs(G):
|
187 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
188 |
st.write(f"- {lab} {sc:.3f}")
|
189 |
|
190 |
-
#
|
191 |
with tabs[5]:
|
192 |
-
years = [p
|
193 |
if years:
|
194 |
-
|
195 |
-
|
196 |
|
197 |
-
#
|
198 |
st.markdown("---")
|
199 |
-
st.text_input("Ask follow
|
200 |
-
|
201 |
-
def _on_ask():
|
202 |
-
q = st.session_state.followup.strip()
|
203 |
-
if not q:
|
204 |
-
st.warning("Please type a question first.")
|
205 |
-
return
|
206 |
with st.spinner("Querying LLM β¦"):
|
207 |
-
ans = asyncio.run(
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
)
|
212 |
-
st.session_state.answer = ans["answer"]
|
213 |
-
|
214 |
-
st.button("Ask AI", on_click=_on_ask)
|
215 |
-
if st.session_state.answer:
|
216 |
-
st.write(st.session_state.answer)
|
217 |
-
|
218 |
-
# entry-point
|
219 |
if __name__ == "__main__":
|
220 |
-
render_ui()
|
|
|
1 |
+
# ββββββββββββββββββββββββββββ app.py βββββββββββββββββββββββββββββββββ
|
2 |
+
"""Streamlit UI β MedGenesis v2 with gene + variant + trial integration."""
|
|
|
3 |
import os, pathlib, asyncio, re
|
4 |
from pathlib import Path
|
5 |
+
|
6 |
import streamlit as st
|
7 |
import pandas as pd
|
8 |
import plotly.express as px
|
|
|
12 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
13 |
from mcp.workspace import get_workspace, save_query
|
14 |
from mcp.knowledge_graph import build_agraph
|
15 |
+
from mcp.graph_utils import build_nx, get_top_hubs, get_density
|
16 |
from mcp.alerts import check_alerts
|
17 |
|
18 |
+
# ---- Streamlit telemetry patch -------------------------------------
|
19 |
+
os.environ.update({
|
20 |
+
"STREAMLIT_DATA_DIR": "/tmp/.streamlit",
|
21 |
+
"XDG_STATE_HOME": "/tmp",
|
22 |
+
"STREAMLIT_BROWSER_GATHERUSAGESTATS": "false",
|
23 |
+
})
|
24 |
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)
|
25 |
|
26 |
ROOT = Path(__file__).parent
|
27 |
LOGO = ROOT / "assets" / "logo.png"
|
28 |
|
29 |
+
# ---------------- helpers -------------------------------------------
|
|
|
|
|
30 |
|
31 |
+
def _latin1_safe(t: str) -> str:
|
32 |
+
return t.encode("latin-1", "replace").decode("latin-1")
|
33 |
+
|
34 |
+
def _export_pdf(papers):
|
35 |
pdf = FPDF()
|
36 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
37 |
pdf.add_page()
|
38 |
pdf.set_font("Helvetica", size=11)
|
39 |
+
pdf.cell(200, 8, _latin1_safe("MedGenesis AI β Results"), ln=True, align="C")
|
40 |
pdf.ln(3)
|
41 |
for i, p in enumerate(papers, 1):
|
42 |
pdf.set_font("Helvetica", "B", 11)
|
43 |
+
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p['title']}"))
|
44 |
+
pdf.set_font("Helvetica", size=9)
|
45 |
body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
|
46 |
+
pdf.multi_cell(0, 6, _latin1_safe(body))
|
47 |
+
pdf.ln(1)
|
48 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
49 |
|
50 |
+
# ---------------- sidebar -------------------------------------------
|
51 |
+
|
52 |
+
def _workspace_sidebar():
|
53 |
with st.sidebar:
|
54 |
st.header("ποΈ Workspace")
|
55 |
ws = get_workspace()
|
|
|
60 |
with st.expander(f"{i}. {item['query']}"):
|
61 |
st.write(item["result"]["ai_summary"])
|
62 |
|
63 |
+
# ---------------- main ----------------------------------------------
|
64 |
+
|
65 |
def render_ui():
|
66 |
st.set_page_config("MedGenesis AI", layout="wide")
|
67 |
+
_workspace_sidebar()
|
68 |
|
69 |
+
# header ---------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
c1, c2 = st.columns([0.15, 0.85])
|
71 |
+
if LOGO.exists():
|
72 |
+
with c1: st.image(str(LOGO), width=105)
|
73 |
+
with c2:
|
74 |
+
st.markdown("## 𧬠**MedGenesis AI**")
|
75 |
+
st.caption("Multiβsource biomedical assistant Β· OpenAI / Gemini")
|
76 |
|
77 |
llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
78 |
+
query = st.text_input("Enter biomedical question", "CRISPR glioblastoma therapy")
|
79 |
+
|
80 |
+
if st.button("Run Search π") and query:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
with st.spinner("Collecting literature & biomedical data β¦"):
|
82 |
res = asyncio.run(orchestrate_search(query, llm=llm))
|
|
|
|
|
|
|
|
|
83 |
st.success(f"Completed with **{res['llm_used'].title()}**")
|
84 |
+
st.session_state.result = res
|
85 |
+
st.session_state.last_query = query
|
86 |
+
st.session_state.last_llm = llm
|
87 |
|
88 |
+
res = st.session_state.get("result")
|
89 |
if not res:
|
90 |
st.info("Enter a question and press **Run Search π**")
|
91 |
return
|
92 |
|
93 |
+
tabs = st.tabs(["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"])
|
|
|
|
|
|
|
94 |
|
95 |
+
# results --------------------------------------------------------
|
96 |
with tabs[0]:
|
97 |
for i, p in enumerate(res["papers"], 1):
|
98 |
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
99 |
st.write(p["summary"])
|
100 |
c1, c2 = st.columns(2)
|
101 |
+
with c1:
|
102 |
+
st.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv")
|
103 |
+
with c2:
|
104 |
+
st.download_button("PDF", _export_pdf(res["papers"]), "papers.pdf", mime="application/pdf")
|
|
|
105 |
if st.button("πΎ Save"):
|
106 |
+
save_query(query, res)
|
107 |
st.success("Saved to workspace")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
st.subheader("AI summary")
|
109 |
st.info(res["ai_summary"])
|
110 |
|
111 |
+
# gene tab -------------------------------------------------------
|
112 |
with tabs[1]:
|
113 |
+
if not res["genes"]:
|
114 |
+
st.info("No gene hits (rateβlimited or none found).")
|
115 |
+
for g in res["genes"]:
|
116 |
+
st.json(g)
|
117 |
+
if res["variants"]:
|
118 |
+
st.markdown("### Tumour variants (cBioPortal)")
|
119 |
+
for k, v in res["variants"].items():
|
120 |
+
st.write(f"**{k}** β {len(v)} variants")
|
121 |
+
|
122 |
+
# trials tab -----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
with tabs[2]:
|
124 |
st.header("Clinical trials")
|
125 |
if not res["clinical_trials"]:
|
126 |
+
st.info("No trials (rateβlimited or none found).")
|
127 |
for t in res["clinical_trials"]:
|
128 |
+
st.markdown(f"**{t['nctId']}** β {t['briefTitle']}")
|
129 |
+
st.write(f"Phase {t.get('phase')} | Status {t.get('status')}")
|
|
|
130 |
|
131 |
+
# graph tab ------------------------------------------------------
|
132 |
with tabs[3]:
|
133 |
+
nodes, edges, cfg = build_agraph(res["papers"], res["umls"], res["drug_safety"])
|
134 |
+
hl = st.text_input("Highlight node:")
|
|
|
|
|
135 |
if hl:
|
136 |
pat = re.compile(re.escape(hl), re.I)
|
137 |
for n in nodes:
|
138 |
n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
139 |
agraph(nodes, edges, cfg)
|
140 |
|
141 |
+
# metrics tab ----------------------------------------------------
|
142 |
with tabs[4]:
|
143 |
+
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
|
|
144 |
st.metric("Density", f"{get_density(G):.3f}")
|
|
|
145 |
for nid, sc in get_top_hubs(G):
|
146 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
147 |
st.write(f"- {lab} {sc:.3f}")
|
148 |
|
149 |
+
# visuals --------------------------------------------------------
|
150 |
with tabs[5]:
|
151 |
+
years = [p.get("published", "")[:4] for p in res["papers"] if p.get("published")]
|
152 |
if years:
|
153 |
+
fig = px.histogram(years, nbins=12, title="Publication Year")
|
154 |
+
st.plotly_chart(fig)
|
155 |
|
156 |
+
# followβup QA ---------------------------------------------------
|
157 |
st.markdown("---")
|
158 |
+
q = st.text_input("Ask followβup question:")
|
159 |
+
if st.button("Ask AI"):
|
|
|
|
|
|
|
|
|
|
|
160 |
with st.spinner("Querying LLM β¦"):
|
161 |
+
ans = asyncio.run(answer_ai_question(q, context=st.session_state.last_query, llm=st.session_state.last_llm))
|
162 |
+
st.write(ans["answer"])
|
163 |
+
|
164 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
if __name__ == "__main__":
|
166 |
+
render_ui()
|