Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
MedGenesis AI β Streamlit front
|
4 |
--------------------------------------
|
5 |
Supports **OpenAI** and **Gemini** engines and the enriched backend
|
6 |
payload introduced in orchestrator v3:
|
@@ -11,7 +11,7 @@ Tabs:
|
|
11 |
"""
|
12 |
|
13 |
##############################################################################
|
14 |
-
#
|
15 |
##############################################################################
|
16 |
import os
|
17 |
import pathlib
|
@@ -25,7 +25,7 @@ from fpdf import FPDF
|
|
25 |
from streamlit_agraph import agraph
|
26 |
|
27 |
##############################################################################
|
28 |
-
#
|
29 |
##############################################################################
|
30 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
31 |
from mcp.workspace import get_workspace, save_query
|
@@ -47,11 +47,11 @@ ROOT = Path(__file__).parent
|
|
47 |
LOGO = ROOT / "assets" / "logo.png"
|
48 |
|
49 |
##############################################################################
|
50 |
-
#
|
51 |
##############################################################################
|
52 |
|
53 |
def _latin1_safe(txt: str) -> str:
|
54 |
-
"""Coerce UTF
|
55 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
56 |
|
57 |
|
@@ -66,9 +66,7 @@ def _pdf(papers: list[dict]) -> bytes:
|
|
66 |
pdf.set_font("Helvetica", "B", 11)
|
67 |
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}"))
|
68 |
pdf.set_font("Helvetica", "", 9)
|
69 |
-
body = f"{p.get('authors','')}
|
70 |
-
{p.get('summary','')}
|
71 |
-
{p.get('link','')}\n"
|
72 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
73 |
pdf.ln(1)
|
74 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
@@ -86,13 +84,13 @@ def _workspace_sidebar():
|
|
86 |
st.write(item['result']['ai_summary'])
|
87 |
|
88 |
##############################################################################
|
89 |
-
#
|
90 |
##############################################################################
|
91 |
|
92 |
def render_ui():
|
93 |
st.set_page_config("MedGenesis AI", layout="wide")
|
94 |
|
95 |
-
# Session
|
96 |
defaults = dict(
|
97 |
query_result=None,
|
98 |
followup_input="",
|
@@ -112,7 +110,7 @@ def render_ui():
|
|
112 |
st.image(str(LOGO), width=105)
|
113 |
with col2:
|
114 |
st.markdown("## 𧬠**MedGenesis AI**")
|
115 |
-
st.caption("Multi
|
116 |
|
117 |
# Controls
|
118 |
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
@@ -197,7 +195,7 @@ def render_ui():
|
|
197 |
st.header("Clinical trials")
|
198 |
trials = res['clinical_trials']
|
199 |
if not trials:
|
200 |
-
st.info("No trials returned (rate
|
201 |
for t in trials:
|
202 |
st.markdown(f"**{t.get('nctId','')}** β {t.get('briefTitle','')} Phase {t.get('phase','?')} | Status {t.get('status','?')}")
|
203 |
|
@@ -230,9 +228,9 @@ def render_ui():
|
|
230 |
if years:
|
231 |
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
232 |
|
233 |
-
# Follow
|
234 |
st.markdown("---")
|
235 |
-
st.text_input("Ask follow
|
236 |
|
237 |
def _on_ask():
|
238 |
q = st.session_state.followup_input
|
@@ -248,7 +246,7 @@ def render_ui():
|
|
248 |
st.write(st.session_state.followup_response)
|
249 |
|
250 |
##############################################################################
|
251 |
-
#
|
252 |
##############################################################################
|
253 |
if __name__ == "__main__":
|
254 |
-
render_ui()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
MedGenesis AI β Streamlit front-end (v3)
|
4 |
--------------------------------------
|
5 |
Supports **OpenAI** and **Gemini** engines and the enriched backend
|
6 |
payload introduced in orchestrator v3:
|
|
|
11 |
"""
|
12 |
|
13 |
##############################################################################
|
14 |
+
# Std-lib / third-party
|
15 |
##############################################################################
|
16 |
import os
|
17 |
import pathlib
|
|
|
25 |
from streamlit_agraph import agraph
|
26 |
|
27 |
##############################################################################
|
28 |
+
# Internal helpers
|
29 |
##############################################################################
|
30 |
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
31 |
from mcp.workspace import get_workspace, save_query
|
|
|
47 |
LOGO = ROOT / "assets" / "logo.png"
|
48 |
|
49 |
##############################################################################
|
50 |
+
# Utility helpers
|
51 |
##############################################################################
|
52 |
|
53 |
def _latin1_safe(txt: str) -> str:
|
54 |
+
"""Coerce UTF-8 β Latin-1 with replacement (for FPDF)."""
|
55 |
return txt.encode("latin-1", "replace").decode("latin-1")
|
56 |
|
57 |
|
|
|
66 |
pdf.set_font("Helvetica", "B", 11)
|
67 |
pdf.multi_cell(0, 7, _latin1_safe(f"{i}. {p.get('title','')}"))
|
68 |
pdf.set_font("Helvetica", "", 9)
|
69 |
+
body = f"{p.get('authors','')}\n{p.get('summary','')}\n{p.get('link','')}\n"
|
|
|
|
|
70 |
pdf.multi_cell(0, 6, _latin1_safe(body))
|
71 |
pdf.ln(1)
|
72 |
return pdf.output(dest="S").encode("latin-1", "replace")
|
|
|
84 |
st.write(item['result']['ai_summary'])
|
85 |
|
86 |
##############################################################################
|
87 |
+
# Main UI renderer
|
88 |
##############################################################################
|
89 |
|
90 |
def render_ui():
|
91 |
st.set_page_config("MedGenesis AI", layout="wide")
|
92 |
|
93 |
+
# Session-state defaults
|
94 |
defaults = dict(
|
95 |
query_result=None,
|
96 |
followup_input="",
|
|
|
110 |
st.image(str(LOGO), width=105)
|
111 |
with col2:
|
112 |
st.markdown("## 𧬠**MedGenesis AI**")
|
113 |
+
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")
|
114 |
|
115 |
# Controls
|
116 |
engine = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
|
|
|
195 |
st.header("Clinical trials")
|
196 |
trials = res['clinical_trials']
|
197 |
if not trials:
|
198 |
+
st.info("No trials returned (rate-limited or none found).")
|
199 |
for t in trials:
|
200 |
st.markdown(f"**{t.get('nctId','')}** β {t.get('briefTitle','')} Phase {t.get('phase','?')} | Status {t.get('status','?')}")
|
201 |
|
|
|
228 |
if years:
|
229 |
st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
230 |
|
231 |
+
# Follow-up QA
|
232 |
st.markdown("---")
|
233 |
+
st.text_input("Ask follow-up question:", key="followup_input")
|
234 |
|
235 |
def _on_ask():
|
236 |
q = st.session_state.followup_input
|
|
|
246 |
st.write(st.session_state.followup_response)
|
247 |
|
248 |
##############################################################################
|
249 |
+
# Entrypoint
|
250 |
##############################################################################
|
251 |
if __name__ == "__main__":
|
252 |
+
render_ui()
|