Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
# app.py
|
2 |
|
3 |
import asyncio, re
|
4 |
from pathlib import Path
|
5 |
-
import streamlit as st
|
6 |
-
import pandas as pd
|
7 |
-
import plotly.express as px
|
8 |
from fpdf import FPDF
|
9 |
from streamlit_agraph import agraph
|
10 |
|
@@ -14,165 +12,111 @@ from mcp.knowledge_graph import build_agraph
|
|
14 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
15 |
from mcp.alerts import check_alerts
|
16 |
|
17 |
-
ROOT
|
18 |
-
LOGO
|
19 |
-
|
20 |
-
#
|
21 |
-
def
|
22 |
-
pdf
|
23 |
-
|
24 |
-
|
25 |
-
pdf.
|
26 |
-
pdf.multi_cell(0, 8, f"{i}. {p['title']}")
|
27 |
-
pdf.set_font("Arial", "", 9)
|
28 |
-
pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
|
29 |
-
pdf.ln(2)
|
30 |
return pdf.output(dest="S").encode("latin-1")
|
31 |
|
32 |
-
|
33 |
-
def sidebar_workspace():
|
34 |
with st.sidebar:
|
35 |
st.header("ποΈ Workspace")
|
36 |
-
|
37 |
-
if not ws:
|
38 |
-
st.info("Run a search and click **Save** to build your workspace.")
|
39 |
-
return
|
40 |
-
for i, item in enumerate(ws, 1):
|
41 |
with st.expander(f"{i}. {item['query']}"):
|
42 |
-
st.write(
|
43 |
-
df = pd.DataFrame(item["result"]["papers"])
|
44 |
-
st.download_button("π₯ CSV", df.to_csv(index=False),
|
45 |
-
f"workspace_{i}.csv", "text/csv")
|
46 |
|
47 |
-
#
|
48 |
def render_ui():
|
49 |
-
st.set_page_config(
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
if saved_q:
|
54 |
-
try:
|
55 |
-
alerts = asyncio.run(check_alerts(saved_q))
|
56 |
-
if alerts:
|
57 |
-
with st.sidebar:
|
58 |
-
st.subheader("π New Papers")
|
59 |
-
for q, links in alerts.items():
|
60 |
-
st.write(f"**{q}** β {len(links)} new")
|
61 |
-
except Exception as e:
|
62 |
-
st.sidebar.warning(f"Alert check failed: {e}")
|
63 |
-
|
64 |
-
sidebar_workspace()
|
65 |
-
|
66 |
-
# Header
|
67 |
-
col1, col2 = st.columns([0.15, 0.85])
|
68 |
with col1:
|
69 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
70 |
with col2:
|
71 |
st.markdown("## 𧬠**MedGenesis AI**")
|
72 |
-
st.caption("
|
73 |
|
74 |
-
st.
|
75 |
-
query = st.text_input("
|
76 |
-
placeholder="e.g. CRISPR
|
77 |
|
78 |
-
#
|
79 |
-
if
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
#
|
|
|
|
|
89 |
with tabs[0]:
|
90 |
-
|
91 |
-
|
92 |
-
st.
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
colA, colB = st.columns(2)
|
97 |
-
with colA:
|
98 |
-
if st.button("πΎ Save to Workspace"):
|
99 |
-
save_query(query, res); st.success("Saved!")
|
100 |
-
with colB:
|
101 |
-
st.download_button("π₯ CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
|
102 |
-
"papers.csv", "text/csv")
|
103 |
-
|
104 |
-
st.download_button("π PDF", pdf_from_papers(res["papers"]),
|
105 |
-
"papers.pdf", "application/pdf")
|
106 |
-
|
107 |
-
st.subheader("π§ UMLS")
|
108 |
-
for c in res["umls"]:
|
109 |
-
if c.get("cui"): st.write(f"- **{c['name']}** ({c['cui']})")
|
110 |
-
|
111 |
-
st.subheader("π OpenFDA Safety")
|
112 |
-
for d in res["drug_safety"]: st.json(d)
|
113 |
-
|
114 |
-
st.subheader("π€ AI Summary")
|
115 |
st.info(res["ai_summary"])
|
|
|
116 |
|
117 |
-
#
|
118 |
with tabs[1]:
|
119 |
-
st.
|
120 |
-
for g in res["genes"]:
|
121 |
-
|
122 |
-
|
123 |
-
st.markdown("### DisGeNET Links"); st.json(res["gene_disease"][:15])
|
124 |
-
if res["mesh_defs"]:
|
125 |
-
st.markdown("### MeSH Definitions")
|
126 |
-
for d in res["mesh_defs"]: st.write("-", d)
|
127 |
-
|
128 |
-
# ----------- TRIALS ------------------
|
129 |
with tabs[2]:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
st.
|
135 |
-
|
136 |
-
|
137 |
-
# ----------- GRAPH -------------------
|
138 |
with tabs[3]:
|
139 |
-
|
140 |
-
|
141 |
-
res["umls"],
|
142 |
-
res["drug_safety"])
|
143 |
-
hl = st.text_input("Highlight node:", key="hl")
|
144 |
if hl:
|
145 |
-
pat
|
146 |
-
for n in nodes:
|
147 |
-
if pat.search(n.label)
|
148 |
-
|
149 |
-
agraph(nodes=nodes, edges=edges, config=cfg)
|
150 |
|
151 |
-
#
|
152 |
with tabs[4]:
|
153 |
-
|
154 |
-
|
155 |
-
st.
|
156 |
-
st.
|
157 |
-
for nid, sc in get_top_hubs(G):
|
158 |
-
lab = next((n.label for n in nodes if n.id == nid), nid)
|
159 |
-
st.write(f"- **{lab}** β {sc:.3f}")
|
160 |
-
|
161 |
-
# ----------- VISUALS -----------------
|
162 |
-
with tabs[5]:
|
163 |
-
years = [p["published"] for p in res["papers"] if p.get("published")]
|
164 |
-
if years: st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
165 |
-
|
166 |
-
# -------- Follow-up AI ---------------
|
167 |
-
st.markdown("---")
|
168 |
-
follow = st.text_input("Ask follow-up question:")
|
169 |
-
if st.button("Ask AI"):
|
170 |
-
st.write(asyncio.run(answer_ai_question(follow, context=query))["answer"])
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
else:
|
173 |
st.info("Enter a question and press **Run Search π**")
|
174 |
|
175 |
-
|
176 |
-
# ---------------------------------------------------------------------
|
177 |
-
if __name__ == "__main__":
|
178 |
render_ui()
|
|
|
1 |
+
# app.py β MedGenesis AI (CPU-only, dual-LLM)
|
2 |
|
3 |
import asyncio, re
|
4 |
from pathlib import Path
|
5 |
+
import streamlit as st, pandas as pd, plotly.express as px
|
|
|
|
|
6 |
from fpdf import FPDF
|
7 |
from streamlit_agraph import agraph
|
8 |
|
|
|
12 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
13 |
from mcp.alerts import check_alerts
|
14 |
|
15 |
+
ROOT = Path(__file__).parent
|
16 |
+
LOGO = ROOT / "assets" / "logo.png"
|
17 |
+
|
18 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
19 |
+
def _pdf(papers):
|
20 |
+
pdf=FPDF(); pdf.add_page(); pdf.set_font("Arial",size=11)
|
21 |
+
for i,p in enumerate(papers,1):
|
22 |
+
pdf.multi_cell(0,7,f"{i}. {p['title']} β {p['authors']}\n{p['summary']}\n{p['link']}\n")
|
23 |
+
pdf.ln(1)
|
|
|
|
|
|
|
|
|
24 |
return pdf.output(dest="S").encode("latin-1")
|
25 |
|
26 |
+
def _sidebar_workspace():
|
|
|
27 |
with st.sidebar:
|
28 |
st.header("ποΈ Workspace")
|
29 |
+
for i,item in enumerate(get_workspace(),1):
|
|
|
|
|
|
|
|
|
30 |
with st.expander(f"{i}. {item['query']}"):
|
31 |
+
st.write(item["result"]["ai_summary"])
|
|
|
|
|
|
|
32 |
|
33 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
34 |
def render_ui():
|
35 |
+
st.set_page_config("MedGenesis AI", layout="wide")
|
36 |
+
_sidebar_workspace()
|
37 |
|
38 |
+
# ββ Header
|
39 |
+
col1,col2 = st.columns([0.15,0.85])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with col1:
|
41 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
42 |
with col2:
|
43 |
st.markdown("## 𧬠**MedGenesis AI**")
|
44 |
+
st.caption("Multi-source biomedical assistant Β· OpenAI / Gemini LLMs")
|
45 |
|
46 |
+
llm = st.radio("Choose LLM Engine", ["openai","gemini"], horizontal=True)
|
47 |
+
query = st.text_input("Enter biomedical questionβ¦",
|
48 |
+
placeholder="e.g. CRISPR glioblastoma therapy")
|
49 |
|
50 |
+
# π Alert check
|
51 |
+
if get_workspace():
|
52 |
+
try:
|
53 |
+
news = asyncio.run(check_alerts([q["query"] for q in get_workspace()]))
|
54 |
+
if news:
|
55 |
+
st.sidebar.subheader("π New Papers")
|
56 |
+
for q, lnks in news.items(): st.sidebar.write(f"**{q}** β {len(lnks)} new")
|
57 |
+
except Exception: pass
|
58 |
|
59 |
+
# ββ Run
|
60 |
+
if st.button("Run Search π") and query:
|
61 |
+
with st.spinner("Gathering literature & biomedical dataβ¦"):
|
62 |
+
res = asyncio.run(orchestrate_search(query, llm))
|
63 |
+
st.success(f"Completed with **{res['llm_used'].title()}**")
|
64 |
|
65 |
+
# Tabs
|
66 |
+
tabs = st.tabs(["Results","Genes","Trials","Graph","Metrics","Visuals"])
|
67 |
+
# 1) Results
|
68 |
with tabs[0]:
|
69 |
+
for i,p in enumerate(res["papers"],1):
|
70 |
+
st.markdown(f"**{i}. [{p['title']}]({p['link']})** β *{p['authors']}*")
|
71 |
+
st.write(p["summary"])
|
72 |
+
st.download_button("π₯ CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
|
73 |
+
"papers.csv","text/csv")
|
74 |
+
st.download_button("π PDF", _pdf(res["papers"]), "papers.pdf","application/pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
st.info(res["ai_summary"])
|
76 |
+
if st.button("Save to Workspace"): save_query(query,res); st.success("Saved!")
|
77 |
|
78 |
+
# 2) Genes
|
79 |
with tabs[1]:
|
80 |
+
st.write("### Gene hits")
|
81 |
+
for g in res["genes"]: st.write("-", g.get("name",g.get("geneid")))
|
82 |
+
|
83 |
+
# 3) Trials
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with tabs[2]:
|
85 |
+
if res["clinical_trials"]:
|
86 |
+
for t in res["clinical_trials"]:
|
87 |
+
st.write(f"**{t['NCTId'][0]}** β {t['BriefTitle'][0]}")
|
88 |
+
else:
|
89 |
+
st.info("No trials (rate-limited or none found).")
|
90 |
+
|
91 |
+
# 4) Graph
|
|
|
92 |
with tabs[3]:
|
93 |
+
nodes,edges,cfg = build_agraph(res["papers"],res["umls"],res["drug_safety"])
|
94 |
+
hl = st.text_input("Highlight nodeβ¦", key="hl")
|
|
|
|
|
|
|
95 |
if hl:
|
96 |
+
pat=re.compile(re.escape(hl),re.I)
|
97 |
+
for n in nodes:
|
98 |
+
n.color="#f1c40f" if pat.search(n.label) else "#d3d3d3"
|
99 |
+
agraph(nodes=nodes,edges=edges,config=cfg)
|
|
|
100 |
|
101 |
+
# 5) Metrics
|
102 |
with tabs[4]:
|
103 |
+
G=build_nx([n.__dict__ for n in nodes],[e.__dict__ for e in edges])
|
104 |
+
st.metric("Density",f"{get_density(G):.3f}")
|
105 |
+
st.write("**Top hubs**")
|
106 |
+
for nid,sc in get_top_hubs(G): st.write(nid, f"{sc:.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
# 6) Visuals
|
109 |
+
with tabs[5]:
|
110 |
+
yrs=[p["published"] for p in res["papers"] if p.get("published")]
|
111 |
+
if yrs: st.plotly_chart(px.histogram(yrs,title="Publication Year"))
|
112 |
+
|
113 |
+
# Follow-up Q-A
|
114 |
+
q2=st.text_input("Ask follow-up:")
|
115 |
+
if st.button("Ask AI"):
|
116 |
+
ans=asyncio.run(answer_ai_question(q2,context=query,llm=llm))
|
117 |
+
st.write(ans["answer"])
|
118 |
else:
|
119 |
st.info("Enter a question and press **Run Search π**")
|
120 |
|
121 |
+
if __name__=="__main__":
|
|
|
|
|
122 |
render_ui()
|