Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
# app.py
|
2 |
|
3 |
-
import asyncio,
|
4 |
from pathlib import Path
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
@@ -8,8 +8,8 @@ import plotly.express as px
|
|
8 |
from fpdf import FPDF
|
9 |
from streamlit_agraph import agraph
|
10 |
|
11 |
-
from mcp.orchestrator
|
12 |
-
from mcp.workspace
|
13 |
from mcp.knowledge_graph import build_agraph
|
14 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
15 |
from mcp.alerts import check_alerts
|
@@ -17,46 +17,51 @@ from mcp.alerts import check_alerts
|
|
17 |
ROOT = Path(__file__).parent
|
18 |
LOGO = ROOT / "assets" / "logo.png"
|
19 |
|
20 |
-
#
|
21 |
-
def
|
22 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=12)
|
23 |
-
pdf.cell(200, 10, "MedGenesis AI
|
24 |
for i, p in enumerate(papers, 1):
|
25 |
-
pdf.set_font("Arial", "B", 12)
|
|
|
26 |
pdf.set_font("Arial", "", 9)
|
27 |
-
pdf.multi_cell(0,
|
28 |
pdf.ln(2)
|
29 |
return pdf.output(dest="S").encode("latin-1")
|
30 |
|
31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def render_ui():
|
33 |
st.set_page_config(page_title="MedGenesis AI", layout="wide")
|
34 |
|
35 |
-
# π
|
36 |
-
|
37 |
-
if
|
38 |
try:
|
39 |
-
|
40 |
-
if
|
41 |
with st.sidebar:
|
42 |
st.subheader("π New Papers")
|
43 |
-
for q, links in
|
44 |
st.write(f"**{q}** β {len(links)} new")
|
45 |
except Exception as e:
|
46 |
-
st.sidebar.
|
47 |
|
48 |
-
|
49 |
-
with st.sidebar:
|
50 |
-
st.header("ποΈ Workspace")
|
51 |
-
for i, itm in enumerate(get_workspace(), 1):
|
52 |
-
with st.expander(f"{i}. {itm['query']}"):
|
53 |
-
st.write("AI summary:", itm["result"]["ai_summary"])
|
54 |
-
st.download_button(
|
55 |
-
"CSV", pd.DataFrame(itm["result"]["papers"]).to_csv(index=False),
|
56 |
-
f"ws_{i}.csv", "text/csv"
|
57 |
-
)
|
58 |
-
if not get_workspace():
|
59 |
-
st.info("No saved queries.")
|
60 |
|
61 |
# Header
|
62 |
col1, col2 = st.columns([0.15, 0.85])
|
@@ -64,81 +69,88 @@ def render_ui():
|
|
64 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
65 |
with col2:
|
66 |
st.markdown("## 𧬠**MedGenesis AI**")
|
67 |
-
st.caption("PubMed
|
68 |
|
69 |
st.markdown("---")
|
70 |
-
query = st.text_input("π Ask
|
71 |
-
placeholder="e.g. CRISPR glioblastoma
|
72 |
|
|
|
73 |
if st.button("Run Search π") and query:
|
74 |
-
with st.spinner("
|
75 |
res = asyncio.run(orchestrate_search(query))
|
76 |
-
st.success("
|
77 |
|
78 |
tabs = st.tabs([
|
79 |
"Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"
|
80 |
])
|
81 |
|
82 |
-
#
|
83 |
with tabs[0]:
|
84 |
-
st.header("π
|
85 |
for i, p in enumerate(res["papers"], 1):
|
86 |
-
st.markdown(f"**{i}. [{p['title']}]({p['link']})**
|
87 |
-
st.markdown(f"<span style='color:gray'>{p['summary']}</span>",
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
for c in res["umls"]:
|
96 |
-
if c.get("cui"):
|
97 |
-
st.write(f"- **{c['name']}** ({c['cui']})")
|
98 |
|
99 |
-
st.subheader("π
|
100 |
for d in res["drug_safety"]: st.json(d)
|
101 |
|
102 |
-
st.subheader("π€ AI
|
103 |
st.info(res["ai_summary"])
|
104 |
|
105 |
-
#
|
106 |
with tabs[1]:
|
107 |
-
st.header("𧬠Gene
|
108 |
for g in res["genes"]:
|
109 |
st.write(f"- **{g.get('name', g.get('geneid'))}** β {g.get('description','')}")
|
110 |
if res["gene_disease"]:
|
111 |
-
st.
|
112 |
-
st.json(res["gene_disease"][:15])
|
113 |
if res["mesh_defs"]:
|
114 |
-
st.
|
115 |
for d in res["mesh_defs"]: st.write("-", d)
|
116 |
|
117 |
-
#
|
118 |
with tabs[2]:
|
119 |
-
st.header("π
|
120 |
if not res["clinical_trials"]:
|
121 |
-
st.info("No trials (
|
122 |
for t in res["clinical_trials"]:
|
123 |
st.markdown(f"**{t['NCTId'][0]}** β {t['BriefTitle'][0]}")
|
124 |
-
st.write(f"Phase: {t.get('Phase',
|
125 |
|
126 |
-
#
|
127 |
with tabs[3]:
|
128 |
st.header("πΊοΈ Knowledge Graph")
|
129 |
-
nodes, edges, cfg = build_agraph(res["papers"],
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
for n in nodes:
|
134 |
if pat.search(n.label): n.color, n.size = "#f1c40f", 30
|
135 |
else: n.color = "#d3d3d3"
|
136 |
agraph(nodes=nodes, edges=edges, config=cfg)
|
137 |
|
138 |
-
#
|
139 |
with tabs[4]:
|
140 |
st.header("π Graph Metrics")
|
141 |
-
import networkx as nx
|
142 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
143 |
st.metric("Density", f"{get_density(G):.3f}")
|
144 |
st.markdown("#### Hub Nodes")
|
@@ -146,19 +158,21 @@ def render_ui():
|
|
146 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
147 |
st.write(f"- **{lab}** β {sc:.3f}")
|
148 |
|
149 |
-
#
|
150 |
with tabs[5]:
|
151 |
-
|
152 |
-
if
|
153 |
|
154 |
-
#
|
155 |
st.markdown("---")
|
156 |
-
|
157 |
if st.button("Ask AI"):
|
158 |
-
st.write(asyncio.run(answer_ai_question(
|
|
|
159 |
else:
|
160 |
st.info("Enter a question and press **Run Search π**")
|
161 |
|
162 |
-
|
|
|
163 |
if __name__ == "__main__":
|
164 |
render_ui()
|
|
|
1 |
+
# app.py β MedGenesis AI (CPU edition)
|
2 |
|
3 |
+
import asyncio, re
|
4 |
from pathlib import Path
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
|
|
8 |
from fpdf import FPDF
|
9 |
from streamlit_agraph import agraph
|
10 |
|
11 |
+
from mcp.orchestrator import orchestrate_search, answer_ai_question
|
12 |
+
from mcp.workspace import get_workspace, save_query
|
13 |
from mcp.knowledge_graph import build_agraph
|
14 |
from mcp.graph_metrics import build_nx, get_top_hubs, get_density
|
15 |
from mcp.alerts import check_alerts
|
|
|
17 |
ROOT = Path(__file__).parent
|
18 |
LOGO = ROOT / "assets" / "logo.png"
|
19 |
|
20 |
+
# ---------------------------------------------------------------------
|
21 |
+
def pdf_from_papers(papers):
|
22 |
pdf = FPDF(); pdf.add_page(); pdf.set_font("Arial", size=12)
|
23 |
+
pdf.cell(200, 10, "MedGenesis AI β Results", ln=True, align="C"); pdf.ln(8)
|
24 |
for i, p in enumerate(papers, 1):
|
25 |
+
pdf.set_font("Arial", "B", 12)
|
26 |
+
pdf.multi_cell(0, 8, f"{i}. {p['title']}")
|
27 |
pdf.set_font("Arial", "", 9)
|
28 |
+
pdf.multi_cell(0, 6, f"{p['authors']}\n{p['summary']}\n{p['link']}\n")
|
29 |
pdf.ln(2)
|
30 |
return pdf.output(dest="S").encode("latin-1")
|
31 |
|
32 |
+
# ---------------------------------------------------------------------
|
33 |
+
def sidebar_workspace():
|
34 |
+
with st.sidebar:
|
35 |
+
st.header("ποΈ Workspace")
|
36 |
+
ws = get_workspace()
|
37 |
+
if not ws:
|
38 |
+
st.info("Run a search and click **Save** to build your workspace.")
|
39 |
+
return
|
40 |
+
for i, item in enumerate(ws, 1):
|
41 |
+
with st.expander(f"{i}. {item['query']}"):
|
42 |
+
st.write("**AI Summary**:", item["result"]["ai_summary"])
|
43 |
+
df = pd.DataFrame(item["result"]["papers"])
|
44 |
+
st.download_button("π₯ CSV", df.to_csv(index=False),
|
45 |
+
f"workspace_{i}.csv", "text/csv")
|
46 |
+
|
47 |
+
# ---------------------------------------------------------------------
|
48 |
def render_ui():
|
49 |
st.set_page_config(page_title="MedGenesis AI", layout="wide")
|
50 |
|
51 |
+
# π quick alert check
|
52 |
+
saved_q = [q["query"] for q in get_workspace()]
|
53 |
+
if saved_q:
|
54 |
try:
|
55 |
+
alerts = asyncio.run(check_alerts(saved_q))
|
56 |
+
if alerts:
|
57 |
with st.sidebar:
|
58 |
st.subheader("π New Papers")
|
59 |
+
for q, links in alerts.items():
|
60 |
st.write(f"**{q}** β {len(links)} new")
|
61 |
except Exception as e:
|
62 |
+
st.sidebar.warning(f"Alert check failed: {e}")
|
63 |
|
64 |
+
sidebar_workspace()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Header
|
67 |
col1, col2 = st.columns([0.15, 0.85])
|
|
|
69 |
if LOGO.exists(): st.image(str(LOGO), width=100)
|
70 |
with col2:
|
71 |
st.markdown("## 𧬠**MedGenesis AI**")
|
72 |
+
st.caption("PubMedΒ·ArXivΒ·OpenFDAΒ·UMLSΒ·NCBIΒ·DisGeNETΒ·ClinicalTrialsΒ·GPT-4o")
|
73 |
|
74 |
st.markdown("---")
|
75 |
+
query = st.text_input("π Ask your biomedical question:",
|
76 |
+
placeholder="e.g. CRISPR for glioblastoma")
|
77 |
|
78 |
+
# -----------------------------------------------------------------
|
79 |
if st.button("Run Search π") and query:
|
80 |
+
with st.spinner("Synthesizing multi-source biomedical intelβ¦"):
|
81 |
res = asyncio.run(orchestrate_search(query))
|
82 |
+
st.success("Ready!")
|
83 |
|
84 |
tabs = st.tabs([
|
85 |
"Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"
|
86 |
])
|
87 |
|
88 |
+
# ----------- RESULTS -----------------
|
89 |
with tabs[0]:
|
90 |
+
st.header("π Literature")
|
91 |
for i, p in enumerate(res["papers"], 1):
|
92 |
+
st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*")
|
93 |
+
st.markdown(f"<span style='color:gray'>{p['summary']}</span>",
|
94 |
+
unsafe_allow_html=True)
|
95 |
+
|
96 |
+
colA, colB = st.columns(2)
|
97 |
+
with colA:
|
98 |
+
if st.button("πΎ Save to Workspace"):
|
99 |
+
save_query(query, res); st.success("Saved!")
|
100 |
+
with colB:
|
101 |
+
st.download_button("π₯ CSV", pd.DataFrame(res["papers"]).to_csv(index=False),
|
102 |
+
"papers.csv", "text/csv")
|
103 |
+
|
104 |
+
st.download_button("π PDF", pdf_from_papers(res["papers"]),
|
105 |
+
"papers.pdf", "application/pdf")
|
106 |
+
|
107 |
+
st.subheader("π§ UMLS")
|
108 |
for c in res["umls"]:
|
109 |
+
if c.get("cui"): st.write(f"- **{c['name']}** ({c['cui']})")
|
|
|
110 |
|
111 |
+
st.subheader("π OpenFDA Safety")
|
112 |
for d in res["drug_safety"]: st.json(d)
|
113 |
|
114 |
+
st.subheader("π€ AI Summary")
|
115 |
st.info(res["ai_summary"])
|
116 |
|
117 |
+
# ----------- GENES & VARIANTS --------
|
118 |
with tabs[1]:
|
119 |
+
st.header("𧬠Gene Signals")
|
120 |
for g in res["genes"]:
|
121 |
st.write(f"- **{g.get('name', g.get('geneid'))}** β {g.get('description','')}")
|
122 |
if res["gene_disease"]:
|
123 |
+
st.markdown("### DisGeNET Links"); st.json(res["gene_disease"][:15])
|
|
|
124 |
if res["mesh_defs"]:
|
125 |
+
st.markdown("### MeSH Definitions")
|
126 |
for d in res["mesh_defs"]: st.write("-", d)
|
127 |
|
128 |
+
# ----------- TRIALS ------------------
|
129 |
with tabs[2]:
|
130 |
+
st.header("π Clinical Trials")
|
131 |
if not res["clinical_trials"]:
|
132 |
+
st.info("No trials retrieved (rate-limited or none found).")
|
133 |
for t in res["clinical_trials"]:
|
134 |
st.markdown(f"**{t['NCTId'][0]}** β {t['BriefTitle'][0]}")
|
135 |
+
st.write(f"Phase: {t.get('Phase',[''])[0]} | Status: {t['OverallStatus'][0]}")
|
136 |
|
137 |
+
# ----------- GRAPH -------------------
|
138 |
with tabs[3]:
|
139 |
st.header("πΊοΈ Knowledge Graph")
|
140 |
+
nodes, edges, cfg = build_agraph(res["papers"],
|
141 |
+
res["umls"],
|
142 |
+
res["drug_safety"])
|
143 |
+
hl = st.text_input("Highlight node:", key="hl")
|
144 |
+
if hl:
|
145 |
+
pat = re.compile(re.escape(hl), re.I)
|
146 |
for n in nodes:
|
147 |
if pat.search(n.label): n.color, n.size = "#f1c40f", 30
|
148 |
else: n.color = "#d3d3d3"
|
149 |
agraph(nodes=nodes, edges=edges, config=cfg)
|
150 |
|
151 |
+
# ----------- METRICS -----------------
|
152 |
with tabs[4]:
|
153 |
st.header("π Graph Metrics")
|
|
|
154 |
G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges])
|
155 |
st.metric("Density", f"{get_density(G):.3f}")
|
156 |
st.markdown("#### Hub Nodes")
|
|
|
158 |
lab = next((n.label for n in nodes if n.id == nid), nid)
|
159 |
st.write(f"- **{lab}** β {sc:.3f}")
|
160 |
|
161 |
+
# ----------- VISUALS -----------------
|
162 |
with tabs[5]:
|
163 |
+
years = [p["published"] for p in res["papers"] if p.get("published")]
|
164 |
+
if years: st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year"))
|
165 |
|
166 |
+
# -------- Follow-up AI ---------------
|
167 |
st.markdown("---")
|
168 |
+
follow = st.text_input("Ask follow-up question:")
|
169 |
if st.button("Ask AI"):
|
170 |
+
st.write(asyncio.run(answer_ai_question(follow, context=query))["answer"])
|
171 |
+
|
172 |
else:
|
173 |
st.info("Enter a question and press **Run Search π**")
|
174 |
|
175 |
+
|
176 |
+
# ---------------------------------------------------------------------
|
177 |
if __name__ == "__main__":
|
178 |
render_ui()
|