Update mcp/orchestrator.py
Browse files- mcp/orchestrator.py +91 -115
mcp/orchestrator.py
CHANGED
@@ -1,138 +1,114 @@
|
|
1 |
"""
|
2 |
-
MedGenesis β
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
β’
|
|
|
7 |
"""
|
8 |
|
9 |
-
|
10 |
-
import
|
11 |
-
from typing import Any, Dict, List, Tuple
|
12 |
|
13 |
-
#
|
14 |
from mcp.arxiv import fetch_arxiv
|
15 |
from mcp.pubmed import fetch_pubmed
|
|
|
16 |
|
17 |
-
#
|
18 |
-
from mcp.gene_hub import resolve_gene # smart dispatcher
|
19 |
-
from mcp.mygene import fetch_gene_info
|
20 |
-
from mcp.ensembl import fetch_ensembl
|
21 |
-
from mcp.opentargets import fetch_ot # tractability, constraint
|
22 |
-
from mcp.cbio import fetch_cbio
|
23 |
-
|
24 |
-
# ββ 3. Safety, trials, concepts ββββββββββββββββββββββββββββββββββββββ
|
25 |
-
from mcp.openfda import fetch_drug_safety
|
26 |
-
from mcp.clinicaltrials import search_trials
|
27 |
from mcp.umls import lookup_umls
|
|
|
|
|
28 |
from mcp.disgenet import disease_to_genes
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
from mcp.drugcentral_ext import fetch_drugcentral
|
32 |
-
from mcp.pubchem_ext import fetch_compound
|
33 |
-
|
34 |
-
# ββ 5. LLM utils (OpenAI & Gemini) βββββββββββββββββββββββββββββββββββ
|
35 |
from mcp.openai_utils import ai_summarize, ai_qa
|
36 |
from mcp.gemini import gemini_summarize, gemini_qa
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
)
|
68 |
-
# flatten & sanitise
|
69 |
-
return {
|
70 |
-
"umls" : [u for u in umls if not isinstance(u, Exception)],
|
71 |
-
"fda" : [d for d in fda if not isinstance(d, Exception)],
|
72 |
-
"genes": [g for g in genes if not isinstance(g, Exception)],
|
73 |
-
}
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
async def orchestrate_search(query: str, *, llm: str=_DEFAULT_LLM,
|
79 |
-
max_papers: int = 25,
|
80 |
-
max_trials: int = 20) -> Dict[str, Any]:
|
81 |
-
"""
|
82 |
-
Full pipeline:
|
83 |
-
1. Fetch literature (arXiv + PubMed)
|
84 |
-
2. Derive keywords (simple TF filtering)
|
85 |
-
3. Multi-API enrich (UMLS, safety, gene, trials, chem)
|
86 |
-
4. Summarise with LLM
|
87 |
-
"""
|
88 |
-
|
89 |
-
# ββ 1 literature (parallel) βββββββββββββββββββββββββββββββββββββββ
|
90 |
-
arxiv_task = asyncio.create_task(fetch_arxiv(query, max_results=max_papers//2))
|
91 |
-
pubmed_task = asyncio.create_task(fetch_pubmed(query, max_results=max_papers//2))
|
92 |
-
papers = sum(await asyncio.gather(arxiv_task, pubmed_task, return_exceptions=False), [])
|
93 |
-
|
94 |
-
# ββ 2 keywords (top-8 by naive word-freq) βββββββββββββββββββββββββ
|
95 |
-
joined = " ".join(p["summary"] for p in papers)
|
96 |
-
tokens = [w for w in joined.split() if len(w) > 4]
|
97 |
-
freq = {}
|
98 |
-
for t in tokens: freq[t] = freq.get(t, 0) + 1
|
99 |
-
keywords = sorted(freq, key=freq.get, reverse=True)[:8]
|
100 |
-
|
101 |
-
# ββ 3 enrichment ββββββββββββββββββββββββββββββββββββββββββββββββββ
|
102 |
-
enrich_task = asyncio.create_task(_keyword_enrichment(keywords))
|
103 |
-
trials_task = asyncio.create_task(search_trials(query, max_studies=max_trials))
|
104 |
-
gene_dis_gen = asyncio.create_task(disease_to_genes(query)) # coarse disease string
|
105 |
-
|
106 |
-
enrich, trials, gene_dis = await asyncio.gather(enrich_task, trials_task, gene_dis_gen)
|
107 |
-
|
108 |
-
# ββ 4 LLM summary & return ββββββββββββββββββββββββββββββββββββββββ
|
109 |
-
summarise_fn, _, engine_tag = _llm_router(llm)
|
110 |
try:
|
111 |
-
|
112 |
except Exception:
|
113 |
-
|
|
|
|
|
|
|
|
|
114 |
|
115 |
return {
|
116 |
"papers" : papers,
|
117 |
-
"
|
118 |
-
"
|
119 |
-
"
|
120 |
-
"
|
121 |
-
"
|
|
|
122 |
"clinical_trials" : trials,
|
123 |
-
"
|
124 |
-
"
|
|
|
|
|
125 |
}
|
126 |
|
127 |
-
|
128 |
-
async def answer_ai_question(question: str, *, context: str,
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
"""
|
133 |
-
_, qa_fn, _ = _llm_router(llm)
|
134 |
-
try:
|
135 |
-
answer = await qa_fn(question, context)
|
136 |
-
except Exception:
|
137 |
-
answer = "LLM unavailable or quota exceeded."
|
138 |
-
return {"answer": answer}
|
|
|
1 |
"""
|
2 |
+
MedGenesis β dual-LLM orchestrator (OpenAI + Gemini)
|
3 |
+
----------------------------------------------------
|
4 |
+
Returns a single dict the UI expects. New keys:
|
5 |
+
|
6 |
+
β’ variants β mutation summaries from cBioPortal
|
7 |
+
β’ variant_count β quick count for empty-tab logic
|
8 |
"""
|
9 |
|
10 |
+
import asyncio
|
11 |
+
from typing import Dict, Any, List
|
|
|
12 |
|
13 |
+
# literature + NLP
|
14 |
from mcp.arxiv import fetch_arxiv
|
15 |
from mcp.pubmed import fetch_pubmed
|
16 |
+
from mcp.nlp import extract_keywords
|
17 |
|
18 |
+
# enrichment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from mcp.umls import lookup_umls
|
20 |
+
from mcp.openfda import fetch_drug_safety
|
21 |
+
from mcp.ncbi import search_gene, get_mesh_definition
|
22 |
from mcp.disgenet import disease_to_genes
|
23 |
+
from mcp.clinicaltrials import search_trials
|
24 |
+
from mcp.mygene import fetch_gene_info
|
25 |
+
from mcp.ensembl import fetch_ensembl
|
26 |
+
from mcp.opentargets import fetch_ot
|
27 |
+
from mcp.cbio import fetch_cbio # NEW
|
28 |
|
29 |
+
# LLMs
|
|
|
|
|
|
|
|
|
30 |
from mcp.openai_utils import ai_summarize, ai_qa
|
31 |
from mcp.gemini import gemini_summarize, gemini_qa
|
32 |
|
33 |
+
_DEF = "openai"
|
34 |
+
|
35 |
+
def _llm_router(llm: str):
|
36 |
+
llm = (llm or _DEF).lower()
|
37 |
+
if llm == "gemini":
|
38 |
+
return ("gemini", gemini_summarize, gemini_qa)
|
39 |
+
return ("openai", ai_summarize, ai_qa)
|
40 |
+
|
41 |
+
# ---------------- gene meta helper ----------------
|
42 |
+
async def _resolve_gene(sym: str) -> Dict[str, Any]:
|
43 |
+
for fn in (fetch_gene_info, fetch_ensembl, fetch_ot):
|
44 |
+
try:
|
45 |
+
data = await fn(sym)
|
46 |
+
if data:
|
47 |
+
return data
|
48 |
+
except Exception:
|
49 |
+
continue
|
50 |
+
return {}
|
51 |
+
|
52 |
+
# ---------------- orchestrator --------------------
|
53 |
+
async def orchestrate_search(query: str, *, llm: str = _DEF) -> Dict[str, Any]:
|
54 |
+
# 1 literature ---------------------------------------------------
|
55 |
+
arxiv_f = asyncio.create_task(fetch_arxiv(query))
|
56 |
+
pubmed_f = asyncio.create_task(fetch_pubmed(query))
|
57 |
+
papers = sum(await asyncio.gather(arxiv_f, pubmed_f), [])
|
58 |
+
|
59 |
+
# 2 keywords -----------------------------------------------------
|
60 |
+
blob = " ".join(p["summary"] for p in papers)
|
61 |
+
keys = extract_keywords(blob)[:8] if blob else []
|
62 |
+
|
63 |
+
# 3 parallel enrichment -----------------------------------------
|
64 |
+
umls_f = [lookup_umls(k) for k in keys]
|
65 |
+
fda_f = [fetch_drug_safety(k) for k in keys]
|
66 |
+
ncbi_f = [search_gene(k) for k in keys]
|
67 |
+
mesh_f = [get_mesh_definition(k) for k in keys]
|
68 |
+
gene_meta= [ _resolve_gene(k) for k in keys[:3] ] # cheap
|
69 |
+
trials_f = asyncio.create_task(search_trials(query, max_studies=20))
|
70 |
+
|
71 |
+
# primary await
|
72 |
+
(
|
73 |
+
umls, fda, ncbi, meshes, gmeta, trials
|
74 |
+
) = await asyncio.gather(
|
75 |
+
asyncio.gather(*umls_f, return_exceptions=True),
|
76 |
+
asyncio.gather(*fda_f, return_exceptions=True),
|
77 |
+
asyncio.gather(*ncbi_f, return_exceptions=True),
|
78 |
+
asyncio.gather(*mesh_f, return_exceptions=True),
|
79 |
+
asyncio.gather(*gene_meta, return_exceptions=True),
|
80 |
+
trials_f,
|
81 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# 4 variants (fire & forget; donβt fail whole run) --------------
|
84 |
+
var_jobs = [fetch_cbio(g.get("symbol") or k)
|
85 |
+
for g, k in zip(gmeta, keys[:len(gmeta)])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
try:
|
87 |
+
variants = sum(await asyncio.gather(*var_jobs), [])
|
88 |
except Exception:
|
89 |
+
variants = []
|
90 |
+
|
91 |
+
# 5 LLM summary -------------------------------------------------
|
92 |
+
_, summarise, _ = _llm_router(llm)
|
93 |
+
summary = await summarise(blob) if blob else "No abstracts found."
|
94 |
|
95 |
return {
|
96 |
"papers" : papers,
|
97 |
+
"umls" : umls,
|
98 |
+
"drug_safety" : fda,
|
99 |
+
"genes" : sum(ncbi, []),
|
100 |
+
"mesh_defs" : meshes,
|
101 |
+
"gene_meta" : gmeta,
|
102 |
+
"gene_disease" : await disease_to_genes(query) or [],
|
103 |
"clinical_trials" : trials,
|
104 |
+
"variants" : variants,
|
105 |
+
"variant_count" : len(variants),
|
106 |
+
"ai_summary" : summary,
|
107 |
+
"llm_used" : llm.lower(),
|
108 |
}
|
109 |
|
110 |
+
# ---------------- follow-up QA --------------------
|
111 |
+
async def answer_ai_question(question: str, *, context: str, llm: str = _DEF) -> Dict[str, str]:
|
112 |
+
_, _, qa_fn = _llm_router(llm)
|
113 |
+
ans = await qa_fn(question, context)
|
114 |
+
return {"answer": ans}
|
|
|
|
|
|
|
|
|
|
|
|
|
|