Update mcp/embeddings.py
Browse files- mcp/embeddings.py +1 -21
mcp/embeddings.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
import os, asyncio
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from sklearn.cluster import KMeans
|
@@ -24,23 +24,3 @@ async def cluster_embeddings(embs: list[list[float]], n_clusters: int = 5) -> li
|
|
24 |
"""
|
25 |
kmeans = KMeans(n_clusters=n_clusters, random_state=0)
|
26 |
return kmeans.fit_predict(embs).tolist()
|
27 |
-
|
28 |
-
|
29 |
-
# ββ mcp/protocols.py βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
30 |
-
import asyncio
|
31 |
-
from mcp.openai_utils import ai_qa
|
32 |
-
from mcp.gemini import gemini_qa
|
33 |
-
|
34 |
-
async def draft_protocol(question: str, context: str, llm: str = "openai") -> str:
|
35 |
-
"""
|
36 |
-
Draft a detailed experimental protocol for a given hypothesis/question.
|
37 |
-
"""
|
38 |
-
if llm.lower() == "gemini":
|
39 |
-
qa_fn = gemini_qa
|
40 |
-
else:
|
41 |
-
qa_fn = ai_qa
|
42 |
-
prompt = (
|
43 |
-
"You are a senior researcher. Draft a step-by-step experimental protocol to test: "
|
44 |
-
f"{question}\nContext:\n{context}\nInclude materials, methods, controls, expected outcomes."
|
45 |
-
)
|
46 |
-
return await qa_fn(prompt)
|
|
|
1 |
+
ββ mcp/embeddings.py βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
2 |
import os, asyncio
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from sklearn.cluster import KMeans
|
|
|
24 |
"""
|
25 |
kmeans = KMeans(n_clusters=n_clusters, random_state=0)
|
26 |
return kmeans.fit_predict(embs).tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|