# app.py import os import streamlit as st from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from mcp.orchestrator import orchestrate_search, answer_ai_question from mcp.schemas import UnifiedSearchInput, UnifiedSearchResult from mcp.workspace import get_workspace, save_query from mcp.knowledge_graph import build_knowledge_graph from pathlib import Path import pandas as pd from fpdf import FPDF import asyncio import plotly.express as px import streamlit.components.v1 as components ROOT_DIR = Path(__file__).resolve().parent LOGO_PATH = ROOT_DIR / "assets" / "logo.png" # --- FASTAPI BACKEND --- api = FastAPI( title="MedGenesis MCP Server", version="2.0.0", description="MedGenesis AI unifies PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o into a single biomedical intelligence platform." ) api.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @api.post("/unified_search", response_model=UnifiedSearchResult) async def unified_search_endpoint(data: UnifiedSearchInput): return await orchestrate_search(data.query) @api.post("/ask_ai") async def ask_ai_endpoint(question: str, context: str = ""): return await answer_ai_question(question, context) # --- PDF Export Utility --- def generate_pdf(papers): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) pdf.cell(200, 10, txt="MedGenesis AI - Search Results", ln=True, align='C') pdf.ln(10) for i, paper in enumerate(papers, 1): pdf.set_font("Arial", style="B", size=12) pdf.multi_cell(0, 10, f"{i}. {paper['title']}") pdf.set_font("Arial", style="", size=10) pdf.multi_cell(0, 8, f"Authors: {paper['authors']}\nLink: {paper['link']}\nSummary: {paper['summary']}\n") pdf.ln(2) pdf_out = pdf.output(dest='S').encode('latin-1') return pdf_out # --- STREAMLIT UI --- def render_ui(): st.set_page_config(page_title="MedGenesis AI", layout="wide") # --- SIDEBAR WORKSPACE --- with st.sidebar: st.header("ποΈ Your Workspace") saved_queries = get_workspace() if saved_queries: for i, item in enumerate(saved_queries, 1): with st.expander(f"{i}. {item['query']}"): st.write("**AI Summary:**", item["result"]["ai_summary"]) st.write("**First Paper:**", item["result"]["papers"][0]["title"] if item["result"]["papers"] else "None") df = pd.DataFrame(item["result"]["papers"]) st.download_button( label="π₯ Download as CSV", data=df.to_csv(index=False), file_name=f"workspace_query_{i}.csv", mime="text/csv", ) else: st.info("Run a search and save it here!") # --- MAIN APP HEADER --- col1, col2 = st.columns([0.15, 0.85]) with col1: if LOGO_PATH.exists(): st.image(str(LOGO_PATH), width=100) else: st.markdown("π§¬") with col2: st.markdown(""" ## 𧬠**MedGenesis AI** β Biomedical Research Reimagined *Unified Intelligence from PubMed, ArXiv, OpenFDA, UMLS, and GPT-4o* """) st.caption("Created by Oluwafemi Idiakhoa | Hugging Face Spaces") st.markdown("---") # Unified Semantic Search st.subheader("π Unified Semantic Search") query = st.text_input("Enter your biomedical research question:", placeholder="e.g. New treatments for glioblastoma using CRISPR") results = None if st.button("Run Search π"): with st.spinner("Thinking... Gathering and analyzing data across 5 systems..."): results = asyncio.run(orchestrate_search(query)) st.success("Search complete! π") if results: tabs = st.tabs(["π Results", "πΊοΈ Knowledge Graph", "π Visualizations"]) # --- TAB 1: Results --- with tabs[0]: for i, paper in enumerate(results["papers"], 1): st.markdown(f"**{i}. [{paper['title']}]({paper['link']})** \n*{paper['authors']}* ({paper['source']})") st.markdown(f"