#!/usr/bin/env python3 # MedGenesis AI – Streamlit frontend (OpenAI / Gemini) import os, pathlib, asyncio, re from pathlib import Path import streamlit as st import pandas as pd import plotly.express as px from fpdf import FPDF from streamlit_agraph import agraph from mcp.orchestrator import orchestrate_search, answer_ai_question from mcp.workspace import get_workspace, save_query from mcp.knowledge_graph import build_agraph from mcp.graph_metrics import build_nx, get_top_hubs, get_density from mcp.alerts import check_alerts # ── Streamlit telemetry off ───────────────────────────────────────── os.environ["STREAMLIT_DATA_DIR"] = "/tmp/.streamlit" os.environ["XDG_STATE_HOME"] = "/tmp" os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false" pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True) ROOT = Path(__file__).parent LOGO = ROOT / "assets" / "logo.png" # ── PDF helper ────────────────────────────────────────────────────── def _latin1(txt: str) -> str: return txt.encode("latin-1", "replace").decode("latin-1") def _pdf(papers): pdf = FPDF() pdf.add_page() pdf.set_font("Helvetica", size=11) pdf.cell(200, 8, _latin1("MedGenesis AI – Results"), ln=True, align="C") pdf.ln(3) for i, p in enumerate(papers, 1): pdf.set_font("Helvetica", "B", 11) pdf.multi_cell(0, 7, _latin1(f"{i}. {p['title']}")) pdf.set_font("Helvetica", "", 9) body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n" pdf.multi_cell(0, 6, _latin1(body)); pdf.ln(1) return pdf.output(dest="S").encode("latin-1", "replace") # ── Sidebar ──────────────────────────────────────────────────────── def _sidebar_workspace(): with st.sidebar: st.header("🗂️ Workspace") ws = get_workspace() if not ws: st.info("Run a search then press **Save** to populate this list.") return for i, item in enumerate(ws, 1): with st.expander(f"{i}. {item['query']}"): st.write(item["result"]["ai_summary"]) # ── Main UI ──────────────────────────────────────────────────────── def render_ui(): st.set_page_config("MedGenesis AI", layout="wide") # session state st.session_state.setdefault("result", None) st.session_state.setdefault("last_query", "") st.session_state.setdefault("last_llm", "") st.session_state.setdefault("followup", "") st.session_state.setdefault("answer", "") _sidebar_workspace() c1, c2 = st.columns([0.15, 0.85]) if LOGO.exists(): c1.image(str(LOGO), width=105) c2.markdown("## 🧬 **MedGenesis AI**") c2.caption("Multi-source biomedical assistant · OpenAI / Gemini") llm = st.radio("LLM engine", ["openai", "gemini"], horizontal=True) query = st.text_input("Enter biomedical question", placeholder="e.g. CRISPR glioblastoma therapy") # Alerts if get_workspace(): try: news = asyncio.run(check_alerts([w["query"] for w in get_workspace()])) if news: with st.sidebar: st.subheader("🔔 New papers") for q, lnks in news.items(): st.write(f"**{q}** – {len(lnks)} new") except Exception: pass # Run search if st.button("Run Search 🚀") and query.strip(): with st.spinner("Collecting literature & biomedical data …"): res = asyncio.run(orchestrate_search(query, llm=llm)) st.session_state.update( result=res, last_query=query, last_llm=llm, followup="", answer="" ) st.success(f"Completed with **{res['llm_used'].title()}**") res = st.session_state.result if not res: st.info("Enter a question and press **Run Search 🚀**") return # ── Tabs ─────────────────────────────────────────────────────── tabs = st.tabs( ["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"] ) # Results with tabs[0]: for i, p in enumerate(res["papers"], 1): st.markdown(f"**{i}. [{p['title']}]({p['link']})** *{p['authors']}*") st.write(p["summary"]) c1, c2 = st.columns(2) c1.download_button("CSV", pd.DataFrame(res["papers"]).to_csv(index=False), "papers.csv", "text/csv") c2.download_button("PDF", _pdf(res["papers"]), "papers.pdf", "application/pdf") if st.button("💾 Save"): save_query(st.session_state.last_query, res) st.success("Saved to workspace") st.subheader("UMLS concepts") for c in res["umls"]: if isinstance(c, dict) and c.get("cui"): st.write(f"- **{c['name']}** ({c['cui']})") st.subheader("OpenFDA safety") for d in res["drug_safety"]: st.json(d) st.subheader("AI summary") st.info(res["ai_summary"]) # Genes with tabs[1]: st.header("Gene / Variant signals") if res["genes_rich"]: for g in res["genes_rich"]: st.write(f"- **{g.get('symbol', g.get('approvedSymbol','?'))}**" f" – {g.get('summary','')[:160]}…") else: st.info("No gene hits (rate-limited or none found).") if res["expr_atlas"]: st.plotly_chart(px.bar( res["expr_atlas"][0].get("expressions", [])[:10], x="assayName", y="value", title="Top tissues (Expression Atlas)" )) if res["cbio_variants"]: st.markdown("### cBioPortal cohort variants") st.json(res["cbio_variants"][0][:15]) # Trials with tabs[2]: st.header("Clinical trials") if not res["clinical_trials"]: st.info("No trials (rate-limited or none found).") for t in res["clinical_trials"]: st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}") st.write(f"Phase {t.get('Phase',[''])[0]} | " f"Status {t['OverallStatus'][0]}") # Graph with tabs[3]: nodes, edges, cfg = build_agraph( res["papers"], res["umls"], res["drug_safety"] ) hl = st.text_input("Highlight node:", key="hl") if hl: pat = re.compile(re.escape(hl), re.I) for n in nodes: n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3" agraph(nodes, edges, cfg) # Metrics with tabs[4]: G = build_nx([n.__dict__ for n in nodes], [e.__dict__ for e in edges]) st.metric("Density", f"{get_density(G):.3f}") st.markdown("**Top hubs**") for nid, sc in get_top_hubs(G): lab = next((n.label for n in nodes if n.id == nid), nid) st.write(f"- {lab} {sc:.3f}") # Visuals with tabs[5]: years = [p["published"] for p in res["papers"] if p.get("published")] if years: st.plotly_chart(px.histogram(years, nbins=12, title="Publication Year")) # Follow-up QA st.markdown("---") st.text_input("Ask follow-up question:", key="followup", placeholder="e.g. Any phase III trials recruiting now?") def _on_ask(): q = st.session_state.followup.strip() if not q: st.warning("Please type a question first.") return with st.spinner("Querying LLM …"): ans = asyncio.run( answer_ai_question(q, context=st.session_state.last_query, llm=st.session_state.last_llm) ) st.session_state.answer = ans["answer"] st.button("Ask AI", on_click=_on_ask) if st.session_state.answer: st.write(st.session_state.answer) # entry-point if __name__ == "__main__": render_ui()