MedQA / pages /2_Consult.py
mgbam's picture
Update pages/2_Consult.py
352a295 verified
raw
history blame
7.67 kB
# /home/user/app/pages/2_Consult.py
import streamlit as st
from langchain_core.messages import HumanMessage, AIMessage # SystemMessage, ToolMessage removed if not used directly
from datetime import datetime
from typing import List, Optional
from sqlmodel import select # <--- IMPORT SELECT FOR SQLMODEL QUERIES
from config.settings import settings
from agent import get_agent_executor
from models import ChatMessage, ChatSession, User # User not directly used if ID is sufficient
from models.db import get_session_context
from services.logger import app_logger
from services.metrics import log_consultation_start
# --- Auth Check (same as before) ---
if not st.session_state.get("authenticated_user_id"):
st.warning("Please log in to access the consultation page.")
try:
st.switch_page("app.py")
except st.errors.StreamlitAPIException: # Catch specific error if needed
st.info("Please navigate to the main login page.")
st.stop()
authenticated_user_id = st.session_state.get("authenticated_user_id")
authenticated_username = st.session_state.get("authenticated_username", "User")
app_logger.info(f"User {authenticated_username} (ID: {authenticated_user_id}) accessed Consult page.")
# --- Initialize Agent (same as before) ---
try:
agent_executor = get_agent_executor()
except Exception as e:
st.error(f"Could not initialize AI Agent: {e}")
app_logger.critical(f"AI Agent initialization failed: {e}", exc_info=True)
st.stop()
# --- Helper Functions ---
@st.cache_data(ttl=60)
def load_chat_history_for_agent(session_id: int) -> List:
messages = []
app_logger.debug(f"Loading agent chat history for session_id: {session_id}")
with get_session_context() as db: # db is a SQLModel Session
# --- SQLMODEL QUERY ---
statement = select(ChatMessage).where(ChatMessage.session_id == session_id).order_by(ChatMessage.timestamp)
db_messages_results = db.exec(statement)
db_messages = db_messages_results.all()
# --------------------
for msg in db_messages:
if msg.role == "user":
messages.append(HumanMessage(content=msg.content))
elif msg.role == "assistant":
messages.append(AIMessage(content=msg.content))
# Add ToolMessage handling if you store and use them
# elif msg.role == "tool" and hasattr(msg, 'tool_call_id') and msg.tool_call_id:
# messages.append(ToolMessage(content=msg.content, tool_call_id=str(msg.tool_call_id)))
app_logger.debug(f"Loaded {len(messages)} messages for agent history for session {session_id}.")
return messages
# save_chat_message_to_db remains the same as it's performing an insert, not a query.
# --- Page Logic ---
st.title("AI Consultation Room")
st.markdown(f"Interacting as: **{authenticated_username}**")
chat_session_id = st.session_state.get("current_chat_session_id")
if not chat_session_id:
st.error("No active chat session ID found. Please try logging out and back in.")
app_logger.error(f"User {authenticated_username} on Consult page with no current_chat_session_id.")
st.stop()
agent_history_key = f"agent_chat_history_{chat_session_id}"
if agent_history_key not in st.session_state:
st.session_state[agent_history_key] = load_chat_history_for_agent(chat_session_id)
if not st.session_state[agent_history_key]:
try:
log_consultation_start(user_id=authenticated_user_id, session_id=chat_session_id)
except Exception as e:
app_logger.warning(f"Failed to log consultation start: {e}")
initial_ai_message_content = "Hello! I am your AI Health Navigator. How can I assist you today?"
st.session_state[agent_history_key].append(AIMessage(content=initial_ai_message_content))
# save_chat_message_to_db(chat_session_id, "assistant", initial_ai_message_content) # save_chat_message_to_db defined elsewhere
# Ensure save_chat_message_to_db is defined or called correctly. For this example, it's:
with get_session_context() as db:
chat_msg_obj = ChatMessage(session_id=chat_session_id, role="assistant", content=initial_ai_message_content)
db.add(chat_msg_obj) # commit handled by context manager
app_logger.info(f"Initialized new consultation for session {chat_session_id} with a greeting.")
# Display chat messages for UI
with st.container():
with get_session_context() as db: # db is a SQLModel Session
# --- SQLMODEL QUERY ---
statement = select(ChatMessage).where(ChatMessage.session_id == chat_session_id).order_by(ChatMessage.timestamp)
ui_messages_results = db.exec(statement)
ui_messages = ui_messages_results.all()
# --------------------
for msg in ui_messages:
avatar = "πŸ§‘β€βš•οΈ" if msg.role == "assistant" else "πŸ‘€"
if msg.role == "tool": avatar = "πŸ› οΈ"
with st.chat_message(msg.role, avatar=avatar):
st.markdown(msg.content)
# Chat input and AI response logic (remains largely the same as it calls agent_executor and save_chat_message_to_db)
# ... (rest of 2_Consult.py from the previous good version)
# For brevity, I'm omitting the chat input and AI response handling section as it primarily
# uses `agent_executor.invoke` and `save_chat_message_to_db`, which itself doesn't change syntax for inserts.
def save_chat_message_to_db(session_id: int, role: str, content: str, tool_call_id: Optional[str]=None, tool_name: Optional[str]=None):
app_logger.debug(f"Saving message to DB for session {session_id}: Role={role}, Content snippet='{content[:50]}...'")
with get_session_context() as db:
chat_message = ChatMessage(
session_id=session_id,
role=role,
content=content,
timestamp=datetime.utcnow(),
tool_call_id=tool_call_id,
tool_name=tool_name
)
db.add(chat_message)
# db.commit() # Handled by context manager
app_logger.info(f"Message saved to DB for session {session_id}. Role: {role}.")
if prompt := st.chat_input("Ask the AI..."):
with st.chat_message("user", avatar="πŸ‘€"):
st.markdown(prompt)
save_chat_message_to_db(chat_session_id, "user", prompt)
st.session_state[agent_history_key].append(HumanMessage(content=prompt))
with st.chat_message("assistant", avatar="πŸ§‘β€βš•οΈ"):
with st.spinner("AI is thinking..."):
try:
response = agent_executor.invoke({
"input": prompt,
"chat_history": st.session_state[agent_history_key]
})
ai_response_content = response.get('output', "No output from AI.")
if not isinstance(ai_response_content, str):
ai_response_content = str(ai_response_content)
st.markdown(ai_response_content)
save_chat_message_to_db(chat_session_id, "assistant", ai_response_content)
st.session_state[agent_history_key].append(AIMessage(content=ai_response_content))
except Exception as e:
app_logger.error(f"Error during agent invocation for session {chat_session_id}: {e}", exc_info=True)
error_message_user = f"Sorry, I encountered an error: {type(e).__name__}"
st.error(error_message_user)
save_chat_message_to_db(chat_session_id, "assistant", f"Error processing request: {type(e).__name__}")
st.session_state[agent_history_key].append(AIMessage(content=f"Observed internal error: {type(e).__name__}"))