Update pages/2_Consult.py
Browse files- pages/2_Consult.py +129 -0
pages/2_Consult.py
CHANGED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
from config.settings import settings
|
6 |
+
from agent import get_agent_executor
|
7 |
+
from models import ChatMessage, ChatSession, User # Assuming User is in session_state
|
8 |
+
from models.db import get_session_context
|
9 |
+
from services.logger import app_logger
|
10 |
+
from services.metrics import log_consultation_start
|
11 |
+
|
12 |
+
st.set_page_config(page_title=f"Consult - {settings.APP_TITLE}", layout="wide")
|
13 |
+
|
14 |
+
if not st.session_state.get("authenticated_user"):
|
15 |
+
st.warning("Please log in to access the consultation page.")
|
16 |
+
st.switch_page("app.py") # Redirect to login
|
17 |
+
|
18 |
+
# --- Initialize Agent ---
|
19 |
+
try:
|
20 |
+
agent_executor = get_agent_executor()
|
21 |
+
except ValueError as e: # Handles missing API key
|
22 |
+
st.error(f"Could not initialize AI Agent: {e}")
|
23 |
+
st.stop()
|
24 |
+
|
25 |
+
|
26 |
+
# --- Helper Functions ---
|
27 |
+
def load_chat_history(session_id: int) -> list:
|
28 |
+
"""Loads chat history from DB for the current session"""
|
29 |
+
messages = []
|
30 |
+
with get_session_context() as db:
|
31 |
+
db_messages = db.query(ChatMessage).filter(ChatMessage.session_id == session_id).order_by(ChatMessage.timestamp).all()
|
32 |
+
for msg in db_messages:
|
33 |
+
if msg.role == "user":
|
34 |
+
messages.append(HumanMessage(content=msg.content))
|
35 |
+
elif msg.role == "assistant":
|
36 |
+
messages.append(AIMessage(content=msg.content))
|
37 |
+
# Add tool message handling if you store them as distinct roles in DB
|
38 |
+
# elif msg.role == "tool":
|
39 |
+
# messages.append(ToolMessage(content=msg.content, tool_call_id=msg.tool_call_id))
|
40 |
+
return messages
|
41 |
+
|
42 |
+
def save_chat_message(session_id: int, role: str, content: str, tool_call_id: Optional[str]=None, tool_name: Optional[str]=None):
|
43 |
+
"""Saves a chat message to the database."""
|
44 |
+
with get_session_context() as db:
|
45 |
+
chat_message = ChatMessage(
|
46 |
+
session_id=session_id,
|
47 |
+
role=role,
|
48 |
+
content=content,
|
49 |
+
timestamp=datetime.utcnow(),
|
50 |
+
tool_call_id=tool_call_id,
|
51 |
+
tool_name=tool_name
|
52 |
+
)
|
53 |
+
db.add(chat_message)
|
54 |
+
db.commit()
|
55 |
+
|
56 |
+
# --- Page Logic ---
|
57 |
+
st.title("AI Consultation Room")
|
58 |
+
st.markdown("Interact with the Quantum Health Navigator AI.")
|
59 |
+
|
60 |
+
current_user: User = st.session_state.authenticated_user
|
61 |
+
chat_session_id = st.session_state.get("current_chat_session_id")
|
62 |
+
|
63 |
+
if not chat_session_id:
|
64 |
+
st.error("No active chat session. Please re-login or contact support.")
|
65 |
+
st.stop()
|
66 |
+
|
67 |
+
# Load initial chat history for the agent (from Langchain Message objects)
|
68 |
+
# For the agent, we need history in LangChain message format
|
69 |
+
if "agent_chat_history" not in st.session_state:
|
70 |
+
st.session_state.agent_chat_history = load_chat_history(chat_session_id)
|
71 |
+
if not st.session_state.agent_chat_history: # If no history, maybe add a system greeting
|
72 |
+
log_consultation_start()
|
73 |
+
# You could add an initial AIMessage here if desired
|
74 |
+
# initial_ai_message = AIMessage(content="Hello! How can I assist you today?")
|
75 |
+
# st.session_state.agent_chat_history.append(initial_ai_message)
|
76 |
+
# save_chat_message(chat_session_id, "assistant", initial_ai_message.content)
|
77 |
+
|
78 |
+
|
79 |
+
# Display chat messages from DB (for UI)
|
80 |
+
with get_session_context() as db:
|
81 |
+
ui_messages = db.query(ChatMessage).filter(ChatMessage.session_id == chat_session_id).order_by(ChatMessage.timestamp).all()
|
82 |
+
for msg in ui_messages:
|
83 |
+
with st.chat_message(msg.role):
|
84 |
+
st.markdown(msg.content)
|
85 |
+
|
86 |
+
# Chat input
|
87 |
+
if prompt := st.chat_input("Ask the AI... (e.g., 'What is hypertension?' or 'Optimize treatment for patient X with diabetes')"):
|
88 |
+
# Add user message to UI and save to DB
|
89 |
+
with st.chat_message("user"):
|
90 |
+
st.markdown(prompt)
|
91 |
+
save_chat_message(chat_session_id, "user", prompt)
|
92 |
+
|
93 |
+
# Add to agent's history (LangChain format)
|
94 |
+
st.session_state.agent_chat_history.append(HumanMessage(content=prompt))
|
95 |
+
|
96 |
+
# Get AI response
|
97 |
+
with st.spinner("AI is thinking..."):
|
98 |
+
try:
|
99 |
+
response = agent_executor.invoke({
|
100 |
+
"input": prompt,
|
101 |
+
"chat_history": st.session_state.agent_chat_history
|
102 |
+
})
|
103 |
+
ai_response_content = response['output']
|
104 |
+
|
105 |
+
# Display AI response in UI and save to DB
|
106 |
+
with st.chat_message("assistant"):
|
107 |
+
st.markdown(ai_response_content)
|
108 |
+
save_chat_message(chat_session_id, "assistant", ai_response_content)
|
109 |
+
|
110 |
+
# Add AI response to agent's history
|
111 |
+
st.session_state.agent_chat_history.append(AIMessage(content=ai_response_content))
|
112 |
+
|
113 |
+
# Note: The agent executor might make tool calls. The create_openai_functions_agent
|
114 |
+
# and AgentExecutor handle the tool invocation and adding ToolMessages to history internally
|
115 |
+
# before producing the final 'output'. If you need to log individual tool calls/results
|
116 |
+
# to your DB, you might need a more custom agent loop or callbacks.
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
app_logger.error(f"Error during agent invocation: {e}")
|
120 |
+
st.error(f"An error occurred: {e}")
|
121 |
+
# Save error message as AI response?
|
122 |
+
error_message = f"Sorry, I encountered an error: {str(e)[:200]}" # Truncate for DB
|
123 |
+
with st.chat_message("assistant"): # Or a custom error role
|
124 |
+
st.markdown(error_message)
|
125 |
+
save_chat_message(chat_session_id, "assistant", error_message) # Or "error" role
|
126 |
+
st.session_state.agent_chat_history.append(AIMessage(content=error_message))
|
127 |
+
|
128 |
+
# Rerun to show the latest messages immediately (though Streamlit usually does this)
|
129 |
+
# st.rerun() # Usually not needed with st.chat_input and context managers
|