Update pages/2_Consult.py
Browse files- pages/2_Consult.py +216 -155
pages/2_Consult.py
CHANGED
@@ -1,193 +1,254 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
from datetime import datetime
|
4 |
-
from typing import List,
|
5 |
from sqlmodel import select
|
6 |
|
7 |
from config.settings import settings
|
8 |
-
from agent import get_agent_executor
|
9 |
from models import ChatMessage, ChatSession
|
10 |
from models.db import get_session_context
|
11 |
from services.logger import app_logger
|
12 |
-
from services.metrics import log_consultation_start
|
13 |
|
14 |
# --- Authentication Check ---
|
15 |
if not st.session_state.get("authenticated_user_id"):
|
16 |
st.warning("Please log in to access the consultation page.")
|
17 |
try:
|
18 |
-
st.switch_page("app.py")
|
19 |
except st.errors.StreamlitAPIException:
|
|
|
20 |
st.info("Please navigate to the main login page.")
|
21 |
-
st.stop()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
authenticated_username = st.session_state.get("authenticated_username", "User")
|
26 |
app_logger.info(f"User '{authenticated_username}' (ID: {authenticated_user_id}) accessed Consult page.")
|
27 |
|
28 |
-
# --- Initialize
|
|
|
29 |
try:
|
30 |
agent_executor = get_agent_executor()
|
31 |
-
app_logger.info("
|
32 |
-
except ValueError as e:
|
33 |
st.error(f"AI Agent Initialization Error: {e}")
|
34 |
-
app_logger.critical(f"Fatal: AI Agent
|
35 |
-
st.info("
|
36 |
st.stop()
|
37 |
-
except Exception as e:
|
38 |
-
st.error(f"
|
39 |
-
app_logger.critical(f"Fatal: Unexpected AI Agent
|
40 |
st.stop()
|
41 |
|
42 |
-
# --- Session State Setup ---
|
43 |
-
st.session_state.setdefault('current_consult_patient_context', {})
|
44 |
-
st.session_state.setdefault('consult_context_submitted', False)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
session
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
st.title("AI Consultation Room")
|
96 |
-
st.markdown(f"**
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
# --- Ensure Chat Session Exists ---
|
100 |
chat_session_id = st.session_state.get("current_chat_session_id")
|
101 |
if not chat_session_id:
|
102 |
-
st.error("No active chat session. Please
|
103 |
-
app_logger.
|
104 |
st.stop()
|
105 |
|
106 |
-
# ---
|
107 |
if not st.session_state.consult_context_submitted:
|
108 |
-
st.subheader("Step 1: Provide Patient Context (Optional)")
|
109 |
-
with st.form("
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
st.
|
132 |
-
|
133 |
-
if
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
try:
|
137 |
-
log_consultation_start(authenticated_user_id, chat_session_id)
|
138 |
-
except:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
#
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
with get_session_context() as db:
|
149 |
stmt = select(ChatMessage).where(ChatMessage.session_id == chat_session_id).order_by(ChatMessage.timestamp)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
if msg.role == "tool":
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
with
|
162 |
-
st.
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
try:
|
169 |
-
# Prepare
|
170 |
-
|
171 |
-
if
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
"
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
-
app_logger.debug(f"Invoking agent: {
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
except Exception as e:
|
188 |
-
app_logger.error(f"Error during agent invocation: {e}", exc_info=True)
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
st.
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /home/user/app/pages/2_Consult.py
|
2 |
import streamlit as st
|
3 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
4 |
from datetime import datetime
|
5 |
+
from typing import List, Optional, Dict, Any
|
6 |
from sqlmodel import select
|
7 |
|
8 |
from config.settings import settings
|
9 |
+
from agent import get_agent_executor # This now returns the OpenAI-based agent executor
|
10 |
from models import ChatMessage, ChatSession
|
11 |
from models.db import get_session_context
|
12 |
from services.logger import app_logger
|
13 |
+
from services.metrics import log_consultation_start # Assuming this function exists
|
14 |
|
15 |
# --- Authentication Check ---
|
16 |
if not st.session_state.get("authenticated_user_id"):
|
17 |
st.warning("Please log in to access the consultation page.")
|
18 |
try:
|
19 |
+
st.switch_page("app.py") # Redirect to the main login page (app.py)
|
20 |
except st.errors.StreamlitAPIException:
|
21 |
+
# This can happen if st.switch_page is called when not in a multipage app context (e.g. dev)
|
22 |
st.info("Please navigate to the main login page.")
|
23 |
+
st.stop() # Halt script execution
|
24 |
|
25 |
+
authenticated_user_id = st.session_state.get("authenticated_user_id")
|
26 |
+
authenticated_username = st.session_state.get("authenticated_username", "User") # Default to "User"
|
|
|
27 |
app_logger.info(f"User '{authenticated_username}' (ID: {authenticated_user_id}) accessed Consult page.")
|
28 |
|
29 |
+
# --- Initialize Agent ---
|
30 |
+
# This will now initialize the OpenAI agent via get_agent_executor() from agent.py
|
31 |
try:
|
32 |
agent_executor = get_agent_executor()
|
33 |
+
app_logger.info("OpenAI-based agent executor initialized successfully for Consult page.")
|
34 |
+
except ValueError as e: # Catch specific error from get_agent_executor if API key is missing
|
35 |
st.error(f"AI Agent Initialization Error: {e}")
|
36 |
+
app_logger.critical(f"Fatal: AI Agent could not be initialized in Consult page: {e}", exc_info=True)
|
37 |
+
st.info("Please ensure the OPENAI_API_KEY is correctly configured in the application settings (Hugging Face Secrets).")
|
38 |
st.stop()
|
39 |
+
except Exception as e: # Catch any other unexpected error during agent init
|
40 |
+
st.error(f"An unexpected error occurred while initializing the AI Agent: {e}")
|
41 |
+
app_logger.critical(f"Fatal: Unexpected AI Agent initialization error: {e}", exc_info=True)
|
42 |
st.stop()
|
43 |
|
|
|
|
|
|
|
44 |
|
45 |
+
# --- Session State for Consult Page ---
|
46 |
+
# Using more descriptive key for the patient context dictionary
|
47 |
+
if 'current_consult_patient_context_dict' not in st.session_state:
|
48 |
+
st.session_state.current_consult_patient_context_dict = {}
|
49 |
+
if 'consult_context_submitted' not in st.session_state:
|
50 |
+
st.session_state.consult_context_submitted = False
|
51 |
+
|
52 |
+
# --- Helper Functions ---
|
53 |
+
@st.cache_data(ttl=30, show_spinner=False, max_entries=10) # Cache agent history for current session
|
54 |
+
def load_chat_history_for_agent(session_id: int) -> List[Any]: # List of LangChain BaseMessage
|
55 |
+
"""Loads chat history from DB, formatted for LangChain agent (HumanMessage, AIMessage, SystemMessage)."""
|
56 |
+
messages = []
|
57 |
+
app_logger.debug(f"Loading agent chat history from DB for session_id: {session_id}")
|
58 |
+
try:
|
59 |
+
with get_session_context() as db:
|
60 |
+
statement = select(ChatMessage).where(ChatMessage.session_id == session_id).order_by(ChatMessage.timestamp)
|
61 |
+
db_messages = db.exec(statement).all()
|
62 |
+
for msg in db_messages:
|
63 |
+
if msg.role == "user": messages.append(HumanMessage(content=msg.content))
|
64 |
+
elif msg.role == "assistant": messages.append(AIMessage(content=msg.content))
|
65 |
+
elif msg.role == "system": messages.append(SystemMessage(content=msg.content))
|
66 |
+
# ToolMessages are usually part of agent_scratchpad, not general chat_history for invoke
|
67 |
+
app_logger.debug(f"Loaded {len(messages)} LangChain messages for agent history (session {session_id}).")
|
68 |
+
except Exception as e:
|
69 |
+
app_logger.error(f"Error loading chat history for session {session_id}: {e}", exc_info=True)
|
70 |
+
st.toast(f"Error loading chat history: {e}", icon="β οΈ") # Non-blocking error
|
71 |
+
return messages
|
72 |
+
|
73 |
+
def save_chat_message_to_db(session_id: int, role: str, content: str, tool_call_id: Optional[str]=None, tool_name: Optional[str]=None):
|
74 |
+
"""Saves a chat message to the database."""
|
75 |
+
app_logger.debug(f"Saving message to DB for session {session_id}: Role='{role}', Content snippet='{content[:50]}...'")
|
76 |
+
try:
|
77 |
+
with get_session_context() as db:
|
78 |
+
chat_message_obj = ChatMessage(
|
79 |
+
session_id=session_id, role=role, content=content, timestamp=datetime.utcnow(),
|
80 |
+
tool_call_id=tool_call_id, tool_name=tool_name
|
81 |
+
)
|
82 |
+
db.add(chat_message_obj) # Commit will be handled by the context manager
|
83 |
+
app_logger.info(f"Message (Role: {role}) saved to DB for session {session_id}.")
|
84 |
+
except Exception as e:
|
85 |
+
app_logger.error(f"Error saving chat message to DB for session {session_id}: {e}", exc_info=True)
|
86 |
+
st.toast(f"Error saving message: {e}", icon="β οΈ")
|
87 |
+
|
88 |
+
|
89 |
+
def update_chat_session_with_context_summary_in_db(session_id: int, context_summary: str):
|
90 |
+
"""Updates the ChatSession record with the patient context summary."""
|
91 |
+
try:
|
92 |
+
with get_session_context() as db:
|
93 |
+
session_to_update = db.get(ChatSession, session_id) # Fetch by primary key
|
94 |
+
if session_to_update:
|
95 |
+
session_to_update.patient_context_summary = context_summary
|
96 |
+
db.add(session_to_update) # SQLModel handles add for updates if PK is present
|
97 |
+
app_logger.info(f"Updated ChatSession {session_id} with patient context summary in DB.")
|
98 |
+
else:
|
99 |
+
app_logger.error(f"Could not find ChatSession {session_id} in DB to update context summary.")
|
100 |
+
except Exception as e:
|
101 |
+
app_logger.error(f"Error updating chat session {session_id} context summary: {e}", exc_info=True)
|
102 |
+
st.toast(f"Error saving context summary: {e}", icon="β οΈ")
|
103 |
+
|
104 |
+
|
105 |
+
# --- Page Logic ---
|
106 |
st.title("AI Consultation Room")
|
107 |
+
st.markdown(f"Interacting as: **{authenticated_username}**")
|
108 |
+
# Prominent disclaimer on the consult page itself
|
109 |
+
st.warning(f"**Reminder & Disclaimer:** {settings.MAIN_DISCLAIMER_LONG} {settings.SIMULATION_DISCLAIMER}")
|
110 |
+
|
111 |
|
|
|
112 |
chat_session_id = st.session_state.get("current_chat_session_id")
|
113 |
if not chat_session_id:
|
114 |
+
st.error("Error: No active chat session ID found. This is unexpected after login. Please try logging out and logging back in. If the problem persists, please contact support.")
|
115 |
+
app_logger.critical(f"User '{authenticated_username}' (ID: {authenticated_user_id}) on Consult page encountered MISSING current_chat_session_id.")
|
116 |
st.stop()
|
117 |
|
118 |
+
# --- Patient Context Input Form ---
|
119 |
if not st.session_state.consult_context_submitted:
|
120 |
+
st.subheader("Step 1: Provide Patient Context (Optional, Use Simulated Data Only)")
|
121 |
+
with st.form(key="patient_context_form_consult_page_openai"): # Unique key
|
122 |
+
st.markdown("**Crucial Reminder: Use only anonymized, simulated data for this demonstration. Do NOT enter real PHI.**")
|
123 |
+
age_in = st.number_input("Patient Age (Simulated)", min_value=0, max_value=120, step=1, value=None, help="Leave blank if not applicable.")
|
124 |
+
gender_options = ["Not Specified", "Male", "Female", "Other"]
|
125 |
+
gender_in = st.selectbox("Patient Gender (Simulated)", gender_options, index=0)
|
126 |
+
cc_in = st.text_area("Chief Complaint / Reason for Consult (Simulated)", height=100, placeholder="e.g., Persistent cough for 2 weeks, fatigue")
|
127 |
+
hist_in = st.text_area("Key Medical History (Simulated)", height=100, placeholder="e.g., Type 2 Diabetes (controlled), Hypertension (on medication), Asthma (mild intermittent)")
|
128 |
+
meds_in = st.text_area("Current Medications (Simulated)", height=100, placeholder="e.g., Metformin 500mg BID, Lisinopril 10mg OD, Salbutamol inhaler PRN")
|
129 |
+
submit_context_btn = st.form_submit_button("Start Consult with this Context")
|
130 |
+
|
131 |
+
if submit_context_btn:
|
132 |
+
raw_context = {
|
133 |
+
"Age": age_in, "Gender": gender_in, "Chief Complaint": cc_in,
|
134 |
+
"Key Medical History": hist_in, "Current Medications": meds_in,
|
135 |
+
}
|
136 |
+
# Filter out None/empty/"Not Specified" values for a cleaner context dictionary
|
137 |
+
filtered_context_dict = {
|
138 |
+
k: v for k, v in raw_context.items()
|
139 |
+
if v is not None and str(v).strip() and \
|
140 |
+
(isinstance(v, str) and v.lower() != "not specified") and \
|
141 |
+
(isinstance(v, int) and v > 0 or not isinstance(v, int)) # ensure age > 0 if int
|
142 |
+
}
|
143 |
+
st.session_state.current_consult_patient_context_dict = filtered_context_dict
|
144 |
+
|
145 |
+
if filtered_context_dict:
|
146 |
+
context_summary_str = "; ".join([f"{k}: {v}" for k, v in filtered_context_dict.items()])
|
147 |
+
else:
|
148 |
+
context_summary_str = "No specific patient context was provided for this session."
|
149 |
+
|
150 |
+
update_chat_session_with_context_summary_in_db(chat_session_id, context_summary_str)
|
151 |
+
# Save a system message to DB indicating context was set for this session
|
152 |
+
save_chat_message_to_db(chat_session_id, "system", f"Initial Patient Context Set: {context_summary_str}")
|
153 |
+
|
154 |
+
st.session_state.consult_context_submitted = True
|
155 |
+
app_logger.info(f"Patient context submitted for session {chat_session_id}: {context_summary_str}")
|
156 |
+
st.rerun() # Rerun to hide form and proceed to chat interface
|
157 |
+
st.stop() # Don't proceed to chat interface until context form is handled
|
158 |
+
|
159 |
+
# --- Chat Interface (Shown after context is submitted) ---
|
160 |
+
st.subheader("Step 2: Interact with AI Health Navigator")
|
161 |
+
agent_history_key = f"agent_chat_history_{chat_session_id}" # Session-specific key for agent's message history
|
162 |
+
|
163 |
+
# Initialize or load agent's chat history (list of LangChain messages)
|
164 |
+
if agent_history_key not in st.session_state:
|
165 |
+
st.session_state[agent_history_key] = load_chat_history_for_agent(chat_session_id)
|
166 |
+
if not st.session_state[agent_history_key]: # If history is empty after loading from DB
|
167 |
try:
|
168 |
+
log_consultation_start(user_id=authenticated_user_id, session_id=chat_session_id)
|
169 |
+
except Exception as e_metric:
|
170 |
+
app_logger.warning(f"Failed to log consultation start metric: {e_metric}")
|
171 |
+
|
172 |
+
initial_ai_message_content = "Hello! I am your AI Health Navigator. How can I assist you today?"
|
173 |
+
patient_context_for_greeting = st.session_state.get('current_consult_patient_context_dict', {})
|
174 |
+
if patient_context_for_greeting: # Check if the dict itself is non-empty
|
175 |
+
initial_ai_message_content += " I have noted the patient context you provided."
|
176 |
+
|
177 |
+
# Add initial AI message to agent's history and save to DB
|
178 |
+
st.session_state[agent_history_key].append(AIMessage(content=initial_ai_message_content))
|
179 |
+
save_chat_message_to_db(chat_session_id, "assistant", initial_ai_message_content)
|
180 |
+
app_logger.info(f"Initialized new consultation (session {chat_session_id}) with a greeting.")
|
181 |
+
|
182 |
+
# Display chat messages for UI (fetch fresh from DB for UI consistency)
|
183 |
+
# This uses a scrollable container.
|
184 |
+
chat_display_container = st.container(height=450)
|
185 |
+
with chat_display_container:
|
186 |
with get_session_context() as db:
|
187 |
stmt = select(ChatMessage).where(ChatMessage.session_id == chat_session_id).order_by(ChatMessage.timestamp)
|
188 |
+
ui_messages_from_db = db.exec(stmt).all()
|
189 |
+
for msg in ui_messages_from_db:
|
190 |
+
if msg.role == "system": continue # Don't display raw system messages in chat UI
|
191 |
+
avatar_icon = "π§ββοΈ" if msg.role == "assistant" else "π€"
|
192 |
+
if msg.role == "tool": avatar_icon = "π οΈ" # Example if you log tool messages for UI
|
193 |
+
with st.chat_message(msg.role, avatar=avatar_icon):
|
194 |
+
st.markdown(msg.content) # Add source/confidence here if msg object from DB supports it
|
195 |
+
|
196 |
+
# Chat input from user
|
197 |
+
if user_prompt := st.chat_input("Ask the AI... (e.g., 'What is hypertension?')"):
|
198 |
+
# Display user message in UI immediately
|
199 |
+
with chat_display_container: # Also add to the container
|
200 |
+
with st.chat_message("user", avatar="π€"):
|
201 |
+
st.markdown(user_prompt)
|
202 |
+
|
203 |
+
save_chat_message_to_db(chat_session_id, "user", user_prompt)
|
204 |
+
st.session_state[agent_history_key].append(HumanMessage(content=user_prompt))
|
205 |
+
|
206 |
+
# Get AI response
|
207 |
+
with chat_display_container: # Add AI response to the container
|
208 |
+
with st.chat_message("assistant", avatar="π§ββοΈ"):
|
209 |
+
thinking_message = st.empty() # Placeholder for "AI is thinking..."
|
210 |
+
thinking_message.markdown("β") # Simple animated cursor
|
211 |
+
|
212 |
try:
|
213 |
+
# Prepare patient context string for the agent
|
214 |
+
patient_context_dict = st.session_state.get('current_consult_patient_context_dict', {})
|
215 |
+
if patient_context_dict: # If there's any context
|
216 |
+
context_parts_for_invoke = [f"{k}: {v}" for k, v in patient_context_dict.items()]
|
217 |
+
patient_context_str_for_invoke = "; ".join(context_parts_for_invoke)
|
218 |
+
else: # If no context was provided or all fields were empty/default
|
219 |
+
patient_context_str_for_invoke = "No specific patient context was provided by the user for this interaction."
|
220 |
+
|
221 |
+
# These are the keys expected by the OpenAI Functions Agent prompt
|
222 |
+
invoke_payload = {
|
223 |
+
"input": user_prompt,
|
224 |
+
"chat_history": st.session_state[agent_history_key], # List of BaseMessage
|
225 |
+
"patient_context": patient_context_str_for_invoke
|
226 |
}
|
227 |
+
app_logger.debug(f"Invoking OpenAI agent with payload: {invoke_payload}")
|
228 |
+
|
229 |
+
thinking_message.markdown("AI is thinking...") # Update spinner text
|
230 |
+
|
231 |
+
response = agent_executor.invoke(invoke_payload)
|
232 |
+
|
233 |
+
ai_response_content = response.get('output', "I could not generate a valid response at this time.")
|
234 |
+
if not isinstance(ai_response_content, str): ai_response_content = str(ai_response_content)
|
235 |
+
|
236 |
+
app_logger.info(f"OpenAI Agent response for session {chat_session_id}: '{ai_response_content[:100]}...'")
|
237 |
+
thinking_message.empty() # Clear "thinking..." message
|
238 |
+
st.markdown(ai_response_content) # Display AI response
|
239 |
+
|
240 |
+
save_chat_message_to_db(chat_session_id, "assistant", ai_response_content)
|
241 |
+
st.session_state[agent_history_key].append(AIMessage(content=ai_response_content))
|
242 |
+
|
243 |
except Exception as e:
|
244 |
+
app_logger.error(f"Error during OpenAI agent invocation for session {chat_session_id}: {e}", exc_info=True)
|
245 |
+
error_type_name = type(e).__name__
|
246 |
+
user_friendly_error = f"Sorry, an error occurred ({error_type_name}). Please try rephrasing your query or contact support if the issue persists."
|
247 |
+
thinking_message.empty() # Clear "thinking..." message
|
248 |
+
st.error(user_friendly_error) # Display error in the AI's bubble
|
249 |
+
|
250 |
+
db_error_msg = f"System encountered an error: {error_type_name}. Details logged."
|
251 |
+
save_chat_message_to_db(chat_session_id, "assistant", db_error_msg)
|
252 |
+
st.session_state[agent_history_key].append(AIMessage(content=f"Note to self: Encountered error ({error_type_name})."))
|
253 |
+
|
254 |
+
st.rerun() # Rerun to ensure the new messages are at the bottom of the scrollable container
|