mgbam commited on
Commit
774d11e
·
verified ·
1 Parent(s): 58b116f

Update tools/quantum_treatment_optimizer_tool.py

Browse files
tools/quantum_treatment_optimizer_tool.py CHANGED
@@ -1,154 +1,94 @@
1
  # /home/user/app/tools/quantum_treatment_optimizer_tool.py
 
 
 
2
 
3
- from langchain_core.tools import BaseTool # Updated import path
4
- from typing import Type, List, Dict, Any, Optional # Optional for potentially missing fields in result
5
- from pydantic import BaseModel, Field # For input schema validation
6
 
7
- # Assuming your actual optimizer function is in this path
8
- # If it's in a different location, adjust the import.
9
  try:
10
  from quantum.optimizer import optimize_treatment
11
  except ImportError:
12
- # Provide a mock function if the actual optimizer is not available
13
- # This allows the rest of the app to run for UI/agent testing.
14
  app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
15
  def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
16
- # Mock implementation for demonstration and testing
17
- mock_suggestions = [
18
- f"Consider adjusting {current_treatments[0] if current_treatments else 'current treatment'} based on {conditions[0] if conditions else 'primary condition'}.",
19
- "Explore adding a complementary therapy Y.",
20
- "Monitor key biomarker Z closely."
21
- ]
22
  return {
23
- "simulated_optimization_id": "QO-Sim-12345",
24
- "suggested_actions": mock_suggestions,
25
- "primary_focus_condition": conditions[0] if conditions else "N/A",
26
- "confidence_level_simulated": 0.75,
27
- "summary_notes": "This simulated plan aims to address the primary condition while managing current treatments. Further clinical evaluation is essential."
28
  }
29
 
30
- from services.logger import app_logger # Your application logger
31
- from services.metrics import log_tool_usage # Your metrics logger
32
-
33
  class QuantumOptimizerInput(BaseModel):
34
- """Input schema for the QuantumTreatmentOptimizerTool."""
35
  patient_data: Dict[str, Any] = Field(
36
  description=(
37
- "A dictionary containing relevant patient characteristics. "
38
  "Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
39
  "'allergies': ['penicillin']}. This should be populated from the overall patient context."
40
  )
41
  )
42
  current_treatments: List[str] = Field(
43
- description="A list of current medications or therapies the patient is on (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
44
  )
45
  conditions: List[str] = Field(
46
- description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension', 'Chronic Back Pain'])."
47
  )
48
- # Optional: Add other specific parameters your optimizer might need
49
- # optimization_goal: Optional[str] = Field(default=None, description="Specific goal for the optimization, e.g., 'minimize side effects', 'maximize efficacy for condition X'.")
50
 
51
  class QuantumTreatmentOptimizerTool(BaseTool):
52
  name: str = "quantum_treatment_optimizer"
53
  description: str = (
54
  "A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
55
  "based on provided patient data, current treatments, and diagnosed conditions. "
56
- "Use this when seeking novel therapeutic strategies, needing to optimize complex polypharmacy, "
57
- "or exploring options for patients with multiple comorbidities. "
58
  "You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
59
  )
60
  args_schema: Type[BaseModel] = QuantumOptimizerInput
61
- # return_direct: bool = False # Usually False, so the agent can process the tool's output
62
 
63
  def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
64
- """
65
- Formats the structured output from optimize_treatment into a natural language string
66
- that the LLM can easily understand and use in its response to the user.
67
- """
68
  if not optimization_output or not isinstance(optimization_output, dict):
69
- return "The optimizer did not return a structured result."
70
-
71
- summary_lines = ["Quantum Treatment Optimizer Suggestions:"]
72
-
73
- if "suggested_actions" in optimization_output and optimization_output["suggested_actions"]:
74
- summary_lines.append(" Key Suggested Actions:")
75
- for action in optimization_output["suggested_actions"]:
76
- summary_lines.append(f" - {action}")
77
-
78
- if "primary_focus_condition" in optimization_output:
79
- summary_lines.append(f" Primary Focus: Addressing {optimization_output['primary_focus_condition']}.")
80
-
81
- if "confidence_level_simulated" in optimization_output:
82
- summary_lines.append(f" Simulated Confidence Level: {optimization_output['confidence_level_simulated']:.0%}") # Format as percentage
83
-
84
- if "summary_notes" in optimization_output:
85
- summary_lines.append(f" Summary Notes: {optimization_output['summary_notes']}")
86
-
87
- if "simulated_optimization_id" in optimization_output:
88
- summary_lines.append(f" (Simulated Optimization ID: {optimization_output['simulated_optimization_id']})")
89
-
90
- if len(summary_lines) == 1: # Only the initial title
91
- return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)}"
92
-
93
  return "\n".join(summary_lines)
94
 
95
  def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
96
- """
97
- Executes the quantum treatment optimization.
98
- The arguments (patient_data, current_treatments, conditions) are automatically populated
99
- by LangChain from the 'action_input' dictionary provided by the LLM,
100
- based on the `args_schema` (QuantumOptimizerInput).
101
- """
102
- # Any additional kwargs passed by the LLM in action_input that are not in the primary schema
103
- # will be available in `kwargs` if your BaseTool is set up to accept them or if you handle them.
104
- # For Pydantic validated args_schema, only defined fields are passed directly as named args.
105
-
106
  app_logger.info(
107
  f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
108
  f"Treatments: {current_treatments}, Conditions: {conditions}"
109
  )
110
  log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
111
-
112
- # Basic validation (Pydantic handles schema, but you can add business logic checks)
113
  if not patient_data or not conditions:
114
- missing_info = []
115
- if not patient_data: missing_info.append("'patient_data'")
116
- if not conditions: missing_info.append("'conditions'")
117
- return f"Error: Insufficient information provided for optimization. Missing: {', '.join(missing_info)}. Please provide comprehensive details."
118
-
119
  try:
120
- # Call your actual optimization logic
121
  optimization_output: Dict[str, Any] = optimize_treatment(
122
- patient_data=patient_data,
123
- current_treatments=current_treatments,
124
- conditions=conditions
125
  )
126
- app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...") # Log snippet
127
-
128
- # Format the potentially complex result into a string for the LLM
129
- formatted_result = self._format_results_for_llm(optimization_output)
130
- app_logger.info(f"Quantum optimizer formatted result for LLM: {formatted_result}")
131
- return formatted_result
132
-
133
- except ImportError as ie: # In case the mock was not used and import still fails
134
- app_logger.error(f"ImportError in QuantumTreatmentOptimizerTool (quantum.optimizer likely missing): {ie}", exc_info=True)
135
  return "Error: The core optimization module is currently unavailable."
136
  except Exception as e:
137
- app_logger.error(f"Unexpected error during quantum optimization process: {e}", exc_info=True)
138
- return f"Error encountered during the optimization process: {str(e)}. Please ensure input data is correctly formatted."
139
 
140
  async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
141
- """
142
- Asynchronous execution of the quantum treatment optimization.
143
- For truly async behavior, `optimize_treatment` should be an async function,
144
- or this method should run the sync `optimize_treatment` in a thread pool.
145
- """
146
- app_logger.info(
147
- f"Quantum Optimizer Tool (async) called. Patient Data Keys: {list(patient_data.keys())}, "
148
- f"Treatments: {current_treatments}, Conditions: {conditions}"
149
- )
150
- # For now, for simplicity with Streamlit, we can call the synchronous version.
151
- # If optimize_treatment is blocking, consider `asyncio.to_thread` for true async execution.
152
- # import asyncio
153
- # return await asyncio.to_thread(self._run, patient_data, current_treatments, conditions, **kwargs)
154
  return self._run(patient_data, current_treatments, conditions, **kwargs)
 
1
  # /home/user/app/tools/quantum_treatment_optimizer_tool.py
2
+ from langchain_core.tools import BaseTool
3
+ from typing import Type, List, Dict, Any, Optional
4
+ from pydantic import BaseModel, Field
5
 
6
+ from services.logger import app_logger
7
+ from services.metrics import log_tool_usage
 
8
 
 
 
9
  try:
10
  from quantum.optimizer import optimize_treatment
11
  except ImportError:
 
 
12
  app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
13
  def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
14
+ import random, time # For mock
15
+ time.sleep(random.uniform(0.5,1.0))
16
+ mock_actions = [f"Mock action for {conditions[0] if conditions else 'general health'} considering {patient_data.get('age', 'N/A')} years old."]
17
+ if current_treatments: mock_actions.append(f"Review interaction with {current_treatments[0]}.")
 
 
18
  return {
19
+ "simulated_optimization_id": f"QO-MOCK-{random.randint(1000,9999)}",
20
+ "suggested_actions": mock_actions,
21
+ "primary_focus_condition": conditions[0] if conditions else "Overall Assessment",
22
+ "confidence_level_simulated": random.uniform(0.7, 0.9),
23
+ "summary_notes": "This is a simulated optimization result. Always consult with medical professionals for actual treatment decisions.",
24
  }
25
 
 
 
 
26
  class QuantumOptimizerInput(BaseModel):
 
27
  patient_data: Dict[str, Any] = Field(
28
  description=(
29
+ "A dictionary of relevant patient characteristics. "
30
  "Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
31
  "'allergies': ['penicillin']}. This should be populated from the overall patient context."
32
  )
33
  )
34
  current_treatments: List[str] = Field(
35
+ description="A list of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
36
  )
37
  conditions: List[str] = Field(
38
+ description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension'])."
39
  )
 
 
40
 
41
  class QuantumTreatmentOptimizerTool(BaseTool):
42
  name: str = "quantum_treatment_optimizer"
43
  description: str = (
44
  "A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
45
  "based on provided patient data, current treatments, and diagnosed conditions. "
46
+ "Use this when seeking novel therapeutic strategies, or to optimize complex polypharmacy. "
 
47
  "You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
48
  )
49
  args_schema: Type[BaseModel] = QuantumOptimizerInput
 
50
 
51
  def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
 
 
 
 
52
  if not optimization_output or not isinstance(optimization_output, dict):
53
+ return "The optimizer did not return a structured result or the result was empty."
54
+ summary_lines = ["Quantum Treatment Optimizer Suggestions (Simulated):"]
55
+ actions = optimization_output.get("suggested_actions", [])
56
+ if actions:
57
+ summary_lines.append(" Key Suggested Actions/Considerations:")
58
+ for action_str in actions: summary_lines.append(f" - {action_str}")
59
+ focus = optimization_output.get("primary_focus_condition")
60
+ if focus: summary_lines.append(f" Primary Focus: Addressing {focus}.")
61
+ confidence = optimization_output.get("confidence_level_simulated")
62
+ if confidence is not None: summary_lines.append(f" Simulated Confidence Level: {confidence:.0%}")
63
+ notes = optimization_output.get("summary_notes")
64
+ if notes: summary_lines.append(f" Summary Notes: {notes}")
65
+ sim_id = optimization_output.get("simulated_optimization_id")
66
+ if sim_id: summary_lines.append(f" (Simulated Optimization ID: {sim_id})")
67
+ if len(summary_lines) == 1:
68
+ return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)[:300]}"
 
 
 
 
 
 
 
 
69
  return "\n".join(summary_lines)
70
 
71
  def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
 
 
 
 
 
 
 
 
 
 
72
  app_logger.info(
73
  f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
74
  f"Treatments: {current_treatments}, Conditions: {conditions}"
75
  )
76
  log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
 
 
77
  if not patient_data or not conditions:
78
+ missing = [item for item, val in [("'patient_data'", patient_data), ("'conditions'", conditions)] if not val]
79
+ return f"Error: Insufficient information. Missing: {', '.join(missing)}. Provide comprehensive details."
 
 
 
80
  try:
 
81
  optimization_output: Dict[str, Any] = optimize_treatment(
82
+ patient_data=patient_data, current_treatments=current_treatments, conditions=conditions
 
 
83
  )
84
+ app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...")
85
+ return self._format_results_for_llm(optimization_output)
86
+ except ImportError as ie:
87
+ app_logger.error(f"ImportError for quantum.optimizer: {ie}", exc_info=True)
 
 
 
 
 
88
  return "Error: The core optimization module is currently unavailable."
89
  except Exception as e:
90
+ app_logger.error(f"Unexpected error during quantum optimization: {e}", exc_info=True)
91
+ return f"Error in optimization process: {str(e)}. Ensure input data is correct."
92
 
93
  async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  return self._run(patient_data, current_treatments, conditions, **kwargs)