Update tools/quantum_treatment_optimizer_tool.py
Browse files
tools/quantum_treatment_optimizer_tool.py
CHANGED
@@ -1,154 +1,94 @@
|
|
1 |
# /home/user/app/tools/quantum_treatment_optimizer_tool.py
|
|
|
|
|
|
|
2 |
|
3 |
-
from
|
4 |
-
from
|
5 |
-
from pydantic import BaseModel, Field # For input schema validation
|
6 |
|
7 |
-
# Assuming your actual optimizer function is in this path
|
8 |
-
# If it's in a different location, adjust the import.
|
9 |
try:
|
10 |
from quantum.optimizer import optimize_treatment
|
11 |
except ImportError:
|
12 |
-
# Provide a mock function if the actual optimizer is not available
|
13 |
-
# This allows the rest of the app to run for UI/agent testing.
|
14 |
app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
|
15 |
def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
"Monitor key biomarker Z closely."
|
21 |
-
]
|
22 |
return {
|
23 |
-
"simulated_optimization_id": "QO-
|
24 |
-
"suggested_actions":
|
25 |
-
"primary_focus_condition": conditions[0] if conditions else "
|
26 |
-
"confidence_level_simulated": 0.
|
27 |
-
"summary_notes": "This
|
28 |
}
|
29 |
|
30 |
-
from services.logger import app_logger # Your application logger
|
31 |
-
from services.metrics import log_tool_usage # Your metrics logger
|
32 |
-
|
33 |
class QuantumOptimizerInput(BaseModel):
|
34 |
-
"""Input schema for the QuantumTreatmentOptimizerTool."""
|
35 |
patient_data: Dict[str, Any] = Field(
|
36 |
description=(
|
37 |
-
"A dictionary
|
38 |
"Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
|
39 |
"'allergies': ['penicillin']}. This should be populated from the overall patient context."
|
40 |
)
|
41 |
)
|
42 |
current_treatments: List[str] = Field(
|
43 |
-
description="A list of current medications or therapies
|
44 |
)
|
45 |
conditions: List[str] = Field(
|
46 |
-
description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension'
|
47 |
)
|
48 |
-
# Optional: Add other specific parameters your optimizer might need
|
49 |
-
# optimization_goal: Optional[str] = Field(default=None, description="Specific goal for the optimization, e.g., 'minimize side effects', 'maximize efficacy for condition X'.")
|
50 |
|
51 |
class QuantumTreatmentOptimizerTool(BaseTool):
|
52 |
name: str = "quantum_treatment_optimizer"
|
53 |
description: str = (
|
54 |
"A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
|
55 |
"based on provided patient data, current treatments, and diagnosed conditions. "
|
56 |
-
"Use this when seeking novel therapeutic strategies,
|
57 |
-
"or exploring options for patients with multiple comorbidities. "
|
58 |
"You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
|
59 |
)
|
60 |
args_schema: Type[BaseModel] = QuantumOptimizerInput
|
61 |
-
# return_direct: bool = False # Usually False, so the agent can process the tool's output
|
62 |
|
63 |
def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
|
64 |
-
"""
|
65 |
-
Formats the structured output from optimize_treatment into a natural language string
|
66 |
-
that the LLM can easily understand and use in its response to the user.
|
67 |
-
"""
|
68 |
if not optimization_output or not isinstance(optimization_output, dict):
|
69 |
-
return "The optimizer did not return a structured result."
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
summary_lines.append("
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
if "
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
summary_lines.append(f" Summary Notes: {optimization_output['summary_notes']}")
|
86 |
-
|
87 |
-
if "simulated_optimization_id" in optimization_output:
|
88 |
-
summary_lines.append(f" (Simulated Optimization ID: {optimization_output['simulated_optimization_id']})")
|
89 |
-
|
90 |
-
if len(summary_lines) == 1: # Only the initial title
|
91 |
-
return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)}"
|
92 |
-
|
93 |
return "\n".join(summary_lines)
|
94 |
|
95 |
def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
96 |
-
"""
|
97 |
-
Executes the quantum treatment optimization.
|
98 |
-
The arguments (patient_data, current_treatments, conditions) are automatically populated
|
99 |
-
by LangChain from the 'action_input' dictionary provided by the LLM,
|
100 |
-
based on the `args_schema` (QuantumOptimizerInput).
|
101 |
-
"""
|
102 |
-
# Any additional kwargs passed by the LLM in action_input that are not in the primary schema
|
103 |
-
# will be available in `kwargs` if your BaseTool is set up to accept them or if you handle them.
|
104 |
-
# For Pydantic validated args_schema, only defined fields are passed directly as named args.
|
105 |
-
|
106 |
app_logger.info(
|
107 |
f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
|
108 |
f"Treatments: {current_treatments}, Conditions: {conditions}"
|
109 |
)
|
110 |
log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
|
111 |
-
|
112 |
-
# Basic validation (Pydantic handles schema, but you can add business logic checks)
|
113 |
if not patient_data or not conditions:
|
114 |
-
|
115 |
-
|
116 |
-
if not conditions: missing_info.append("'conditions'")
|
117 |
-
return f"Error: Insufficient information provided for optimization. Missing: {', '.join(missing_info)}. Please provide comprehensive details."
|
118 |
-
|
119 |
try:
|
120 |
-
# Call your actual optimization logic
|
121 |
optimization_output: Dict[str, Any] = optimize_treatment(
|
122 |
-
patient_data=patient_data,
|
123 |
-
current_treatments=current_treatments,
|
124 |
-
conditions=conditions
|
125 |
)
|
126 |
-
app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...")
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
app_logger.info(f"Quantum optimizer formatted result for LLM: {formatted_result}")
|
131 |
-
return formatted_result
|
132 |
-
|
133 |
-
except ImportError as ie: # In case the mock was not used and import still fails
|
134 |
-
app_logger.error(f"ImportError in QuantumTreatmentOptimizerTool (quantum.optimizer likely missing): {ie}", exc_info=True)
|
135 |
return "Error: The core optimization module is currently unavailable."
|
136 |
except Exception as e:
|
137 |
-
app_logger.error(f"Unexpected error during quantum optimization
|
138 |
-
return f"Error
|
139 |
|
140 |
async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
141 |
-
"""
|
142 |
-
Asynchronous execution of the quantum treatment optimization.
|
143 |
-
For truly async behavior, `optimize_treatment` should be an async function,
|
144 |
-
or this method should run the sync `optimize_treatment` in a thread pool.
|
145 |
-
"""
|
146 |
-
app_logger.info(
|
147 |
-
f"Quantum Optimizer Tool (async) called. Patient Data Keys: {list(patient_data.keys())}, "
|
148 |
-
f"Treatments: {current_treatments}, Conditions: {conditions}"
|
149 |
-
)
|
150 |
-
# For now, for simplicity with Streamlit, we can call the synchronous version.
|
151 |
-
# If optimize_treatment is blocking, consider `asyncio.to_thread` for true async execution.
|
152 |
-
# import asyncio
|
153 |
-
# return await asyncio.to_thread(self._run, patient_data, current_treatments, conditions, **kwargs)
|
154 |
return self._run(patient_data, current_treatments, conditions, **kwargs)
|
|
|
1 |
# /home/user/app/tools/quantum_treatment_optimizer_tool.py
|
2 |
+
from langchain_core.tools import BaseTool
|
3 |
+
from typing import Type, List, Dict, Any, Optional
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
|
6 |
+
from services.logger import app_logger
|
7 |
+
from services.metrics import log_tool_usage
|
|
|
8 |
|
|
|
|
|
9 |
try:
|
10 |
from quantum.optimizer import optimize_treatment
|
11 |
except ImportError:
|
|
|
|
|
12 |
app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
|
13 |
def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
|
14 |
+
import random, time # For mock
|
15 |
+
time.sleep(random.uniform(0.5,1.0))
|
16 |
+
mock_actions = [f"Mock action for {conditions[0] if conditions else 'general health'} considering {patient_data.get('age', 'N/A')} years old."]
|
17 |
+
if current_treatments: mock_actions.append(f"Review interaction with {current_treatments[0]}.")
|
|
|
|
|
18 |
return {
|
19 |
+
"simulated_optimization_id": f"QO-MOCK-{random.randint(1000,9999)}",
|
20 |
+
"suggested_actions": mock_actions,
|
21 |
+
"primary_focus_condition": conditions[0] if conditions else "Overall Assessment",
|
22 |
+
"confidence_level_simulated": random.uniform(0.7, 0.9),
|
23 |
+
"summary_notes": "This is a simulated optimization result. Always consult with medical professionals for actual treatment decisions.",
|
24 |
}
|
25 |
|
|
|
|
|
|
|
26 |
class QuantumOptimizerInput(BaseModel):
|
|
|
27 |
patient_data: Dict[str, Any] = Field(
|
28 |
description=(
|
29 |
+
"A dictionary of relevant patient characteristics. "
|
30 |
"Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
|
31 |
"'allergies': ['penicillin']}. This should be populated from the overall patient context."
|
32 |
)
|
33 |
)
|
34 |
current_treatments: List[str] = Field(
|
35 |
+
description="A list of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
|
36 |
)
|
37 |
conditions: List[str] = Field(
|
38 |
+
description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension'])."
|
39 |
)
|
|
|
|
|
40 |
|
41 |
class QuantumTreatmentOptimizerTool(BaseTool):
|
42 |
name: str = "quantum_treatment_optimizer"
|
43 |
description: str = (
|
44 |
"A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
|
45 |
"based on provided patient data, current treatments, and diagnosed conditions. "
|
46 |
+
"Use this when seeking novel therapeutic strategies, or to optimize complex polypharmacy. "
|
|
|
47 |
"You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
|
48 |
)
|
49 |
args_schema: Type[BaseModel] = QuantumOptimizerInput
|
|
|
50 |
|
51 |
def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
|
|
|
|
|
|
|
|
|
52 |
if not optimization_output or not isinstance(optimization_output, dict):
|
53 |
+
return "The optimizer did not return a structured result or the result was empty."
|
54 |
+
summary_lines = ["Quantum Treatment Optimizer Suggestions (Simulated):"]
|
55 |
+
actions = optimization_output.get("suggested_actions", [])
|
56 |
+
if actions:
|
57 |
+
summary_lines.append(" Key Suggested Actions/Considerations:")
|
58 |
+
for action_str in actions: summary_lines.append(f" - {action_str}")
|
59 |
+
focus = optimization_output.get("primary_focus_condition")
|
60 |
+
if focus: summary_lines.append(f" Primary Focus: Addressing {focus}.")
|
61 |
+
confidence = optimization_output.get("confidence_level_simulated")
|
62 |
+
if confidence is not None: summary_lines.append(f" Simulated Confidence Level: {confidence:.0%}")
|
63 |
+
notes = optimization_output.get("summary_notes")
|
64 |
+
if notes: summary_lines.append(f" Summary Notes: {notes}")
|
65 |
+
sim_id = optimization_output.get("simulated_optimization_id")
|
66 |
+
if sim_id: summary_lines.append(f" (Simulated Optimization ID: {sim_id})")
|
67 |
+
if len(summary_lines) == 1:
|
68 |
+
return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)[:300]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return "\n".join(summary_lines)
|
70 |
|
71 |
def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
app_logger.info(
|
73 |
f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
|
74 |
f"Treatments: {current_treatments}, Conditions: {conditions}"
|
75 |
)
|
76 |
log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
|
|
|
|
|
77 |
if not patient_data or not conditions:
|
78 |
+
missing = [item for item, val in [("'patient_data'", patient_data), ("'conditions'", conditions)] if not val]
|
79 |
+
return f"Error: Insufficient information. Missing: {', '.join(missing)}. Provide comprehensive details."
|
|
|
|
|
|
|
80 |
try:
|
|
|
81 |
optimization_output: Dict[str, Any] = optimize_treatment(
|
82 |
+
patient_data=patient_data, current_treatments=current_treatments, conditions=conditions
|
|
|
|
|
83 |
)
|
84 |
+
app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...")
|
85 |
+
return self._format_results_for_llm(optimization_output)
|
86 |
+
except ImportError as ie:
|
87 |
+
app_logger.error(f"ImportError for quantum.optimizer: {ie}", exc_info=True)
|
|
|
|
|
|
|
|
|
|
|
88 |
return "Error: The core optimization module is currently unavailable."
|
89 |
except Exception as e:
|
90 |
+
app_logger.error(f"Unexpected error during quantum optimization: {e}", exc_info=True)
|
91 |
+
return f"Error in optimization process: {str(e)}. Ensure input data is correct."
|
92 |
|
93 |
async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
return self._run(patient_data, current_treatments, conditions, **kwargs)
|