mgbam commited on
Commit
dbccd06
·
verified ·
1 Parent(s): be49f6d

Rename tools/quantum_tool.py to quantum_treatment_optimizer_tool.py

Browse files
quantum_treatment_optimizer_tool.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /home/user/app/tools/quantum_treatment_optimizer_tool.py
2
+
3
+ from langchain_core.tools import BaseTool # Updated import path
4
+ from typing import Type, List, Dict, Any, Optional # Optional for potentially missing fields in result
5
+ from pydantic import BaseModel, Field # For input schema validation
6
+
7
+ # Assuming your actual optimizer function is in this path
8
+ # If it's in a different location, adjust the import.
9
+ try:
10
+ from quantum.optimizer import optimize_treatment
11
+ except ImportError:
12
+ # Provide a mock function if the actual optimizer is not available
13
+ # This allows the rest of the app to run for UI/agent testing.
14
+ app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
15
+ def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
16
+ # Mock implementation for demonstration and testing
17
+ mock_suggestions = [
18
+ f"Consider adjusting {current_treatments[0] if current_treatments else 'current treatment'} based on {conditions[0] if conditions else 'primary condition'}.",
19
+ "Explore adding a complementary therapy Y.",
20
+ "Monitor key biomarker Z closely."
21
+ ]
22
+ return {
23
+ "simulated_optimization_id": "QO-Sim-12345",
24
+ "suggested_actions": mock_suggestions,
25
+ "primary_focus_condition": conditions[0] if conditions else "N/A",
26
+ "confidence_level_simulated": 0.75,
27
+ "summary_notes": "This simulated plan aims to address the primary condition while managing current treatments. Further clinical evaluation is essential."
28
+ }
29
+
30
+ from services.logger import app_logger # Your application logger
31
+ from services.metrics import log_tool_usage # Your metrics logger
32
+
33
+ class QuantumOptimizerInput(BaseModel):
34
+ """Input schema for the QuantumTreatmentOptimizerTool."""
35
+ patient_data: Dict[str, Any] = Field(
36
+ description=(
37
+ "A dictionary containing relevant patient characteristics. "
38
+ "Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
39
+ "'allergies': ['penicillin']}. This should be populated from the overall patient context."
40
+ )
41
+ )
42
+ current_treatments: List[str] = Field(
43
+ description="A list of current medications or therapies the patient is on (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
44
+ )
45
+ conditions: List[str] = Field(
46
+ description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension', 'Chronic Back Pain'])."
47
+ )
48
+ # Optional: Add other specific parameters your optimizer might need
49
+ # optimization_goal: Optional[str] = Field(default=None, description="Specific goal for the optimization, e.g., 'minimize side effects', 'maximize efficacy for condition X'.")
50
+
51
+ class QuantumTreatmentOptimizerTool(BaseTool):
52
+ name: str = "quantum_treatment_optimizer"
53
+ description: str = (
54
+ "A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
55
+ "based on provided patient data, current treatments, and diagnosed conditions. "
56
+ "Use this when seeking novel therapeutic strategies, needing to optimize complex polypharmacy, "
57
+ "or exploring options for patients with multiple comorbidities. "
58
+ "You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
59
+ )
60
+ args_schema: Type[BaseModel] = QuantumOptimizerInput
61
+ # return_direct: bool = False # Usually False, so the agent can process the tool's output
62
+
63
+ def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
64
+ """
65
+ Formats the structured output from optimize_treatment into a natural language string
66
+ that the LLM can easily understand and use in its response to the user.
67
+ """
68
+ if not optimization_output or not isinstance(optimization_output, dict):
69
+ return "The optimizer did not return a structured result."
70
+
71
+ summary_lines = ["Quantum Treatment Optimizer Suggestions:"]
72
+
73
+ if "suggested_actions" in optimization_output and optimization_output["suggested_actions"]:
74
+ summary_lines.append(" Key Suggested Actions:")
75
+ for action in optimization_output["suggested_actions"]:
76
+ summary_lines.append(f" - {action}")
77
+
78
+ if "primary_focus_condition" in optimization_output:
79
+ summary_lines.append(f" Primary Focus: Addressing {optimization_output['primary_focus_condition']}.")
80
+
81
+ if "confidence_level_simulated" in optimization_output:
82
+ summary_lines.append(f" Simulated Confidence Level: {optimization_output['confidence_level_simulated']:.0%}") # Format as percentage
83
+
84
+ if "summary_notes" in optimization_output:
85
+ summary_lines.append(f" Summary Notes: {optimization_output['summary_notes']}")
86
+
87
+ if "simulated_optimization_id" in optimization_output:
88
+ summary_lines.append(f" (Simulated Optimization ID: {optimization_output['simulated_optimization_id']})")
89
+
90
+ if len(summary_lines) == 1: # Only the initial title
91
+ return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)}"
92
+
93
+ return "\n".join(summary_lines)
94
+
95
+ def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
96
+ """
97
+ Executes the quantum treatment optimization.
98
+ The arguments (patient_data, current_treatments, conditions) are automatically populated
99
+ by LangChain from the 'action_input' dictionary provided by the LLM,
100
+ based on the `args_schema` (QuantumOptimizerInput).
101
+ """
102
+ # Any additional kwargs passed by the LLM in action_input that are not in the primary schema
103
+ # will be available in `kwargs` if your BaseTool is set up to accept them or if you handle them.
104
+ # For Pydantic validated args_schema, only defined fields are passed directly as named args.
105
+
106
+ app_logger.info(
107
+ f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
108
+ f"Treatments: {current_treatments}, Conditions: {conditions}"
109
+ )
110
+ log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
111
+
112
+ # Basic validation (Pydantic handles schema, but you can add business logic checks)
113
+ if not patient_data or not conditions:
114
+ missing_info = []
115
+ if not patient_data: missing_info.append("'patient_data'")
116
+ if not conditions: missing_info.append("'conditions'")
117
+ return f"Error: Insufficient information provided for optimization. Missing: {', '.join(missing_info)}. Please provide comprehensive details."
118
+
119
+ try:
120
+ # Call your actual optimization logic
121
+ optimization_output: Dict[str, Any] = optimize_treatment(
122
+ patient_data=patient_data,
123
+ current_treatments=current_treatments,
124
+ conditions=conditions
125
+ )
126
+ app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...") # Log snippet
127
+
128
+ # Format the potentially complex result into a string for the LLM
129
+ formatted_result = self._format_results_for_llm(optimization_output)
130
+ app_logger.info(f"Quantum optimizer formatted result for LLM: {formatted_result}")
131
+ return formatted_result
132
+
133
+ except ImportError as ie: # In case the mock was not used and import still fails
134
+ app_logger.error(f"ImportError in QuantumTreatmentOptimizerTool (quantum.optimizer likely missing): {ie}", exc_info=True)
135
+ return "Error: The core optimization module is currently unavailable."
136
+ except Exception as e:
137
+ app_logger.error(f"Unexpected error during quantum optimization process: {e}", exc_info=True)
138
+ return f"Error encountered during the optimization process: {str(e)}. Please ensure input data is correctly formatted."
139
+
140
+ async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
141
+ """
142
+ Asynchronous execution of the quantum treatment optimization.
143
+ For truly async behavior, `optimize_treatment` should be an async function,
144
+ or this method should run the sync `optimize_treatment` in a thread pool.
145
+ """
146
+ app_logger.info(
147
+ f"Quantum Optimizer Tool (async) called. Patient Data Keys: {list(patient_data.keys())}, "
148
+ f"Treatments: {current_treatments}, Conditions: {conditions}"
149
+ )
150
+ # For now, for simplicity with Streamlit, we can call the synchronous version.
151
+ # If optimize_treatment is blocking, consider `asyncio.to_thread` for true async execution.
152
+ # import asyncio
153
+ # return await asyncio.to_thread(self._run, patient_data, current_treatments, conditions, **kwargs)
154
+ return self._run(patient_data, current_treatments, conditions, **kwargs)
tools/quantum_tool.py DELETED
@@ -1,37 +0,0 @@
1
- from langchain.tools import BaseTool
2
- from typing import Type, List, Dict, Any
3
- from pydantic import BaseModel, Field
4
- from quantum.optimizer import optimize_treatment
5
- from services.logger import app_logger
6
- from services.metrics import log_tool_usage
7
-
8
- class QuantumOptimizerInput(BaseModel):
9
- patient_data: Dict[str, Any] = Field(description="Dictionary of relevant patient characteristics (e.g., {'age': 55, 'gender': 'male'}).")
10
- current_treatments: List[str] = Field(description="List of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg']).")
11
- conditions: List[str] = Field(description="List of diagnosed conditions (e.g., ['Type 2 Diabetes', 'Hypertension']).")
12
-
13
- class QuantumTreatmentOptimizerTool(BaseTool):
14
- name: str = "quantum_treatment_optimizer"
15
- description: str = (
16
- "A specialized tool that uses quantum-inspired algorithms to suggest optimized treatment plans. "
17
- "Provide patient data, current treatments, and diagnosed conditions. "
18
- "Use this when seeking novel therapeutic strategies or to optimize complex polypharmacy."
19
- )
20
- args_schema: Type[BaseModel] = QuantumOptimizerInput
21
-
22
- def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str:
23
- app_logger.info(f"Quantum Optimizer Tool called with: {patient_data}, {current_treatments}, {conditions}")
24
- log_tool_usage(self.name)
25
- try:
26
- result = optimize_treatment(patient_data, current_treatments, conditions)
27
- # Format result for LLM
28
- # Example: "Optimized suggestions: ..., Confidence: ..., Summary: ..."
29
- # You might want to pretty-print the dict or convert to a string summary
30
- return f"Quantum Optimizer Results: {result}"
31
- except Exception as e:
32
- app_logger.error(f"Error in QuantumTreatmentOptimizerTool: {e}")
33
- return f"Error during quantum optimization: {str(e)}"
34
-
35
- async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str:
36
- # For simplicity, using sync version for now
37
- return self._run(patient_data, current_treatments, conditions)