Rename tools/quantum_tool.py to quantum_treatment_optimizer_tool.py
Browse files- quantum_treatment_optimizer_tool.py +154 -0
- tools/quantum_tool.py +0 -37
quantum_treatment_optimizer_tool.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /home/user/app/tools/quantum_treatment_optimizer_tool.py
|
2 |
+
|
3 |
+
from langchain_core.tools import BaseTool # Updated import path
|
4 |
+
from typing import Type, List, Dict, Any, Optional # Optional for potentially missing fields in result
|
5 |
+
from pydantic import BaseModel, Field # For input schema validation
|
6 |
+
|
7 |
+
# Assuming your actual optimizer function is in this path
|
8 |
+
# If it's in a different location, adjust the import.
|
9 |
+
try:
|
10 |
+
from quantum.optimizer import optimize_treatment
|
11 |
+
except ImportError:
|
12 |
+
# Provide a mock function if the actual optimizer is not available
|
13 |
+
# This allows the rest of the app to run for UI/agent testing.
|
14 |
+
app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.")
|
15 |
+
def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]:
|
16 |
+
# Mock implementation for demonstration and testing
|
17 |
+
mock_suggestions = [
|
18 |
+
f"Consider adjusting {current_treatments[0] if current_treatments else 'current treatment'} based on {conditions[0] if conditions else 'primary condition'}.",
|
19 |
+
"Explore adding a complementary therapy Y.",
|
20 |
+
"Monitor key biomarker Z closely."
|
21 |
+
]
|
22 |
+
return {
|
23 |
+
"simulated_optimization_id": "QO-Sim-12345",
|
24 |
+
"suggested_actions": mock_suggestions,
|
25 |
+
"primary_focus_condition": conditions[0] if conditions else "N/A",
|
26 |
+
"confidence_level_simulated": 0.75,
|
27 |
+
"summary_notes": "This simulated plan aims to address the primary condition while managing current treatments. Further clinical evaluation is essential."
|
28 |
+
}
|
29 |
+
|
30 |
+
from services.logger import app_logger # Your application logger
|
31 |
+
from services.metrics import log_tool_usage # Your metrics logger
|
32 |
+
|
33 |
+
class QuantumOptimizerInput(BaseModel):
|
34 |
+
"""Input schema for the QuantumTreatmentOptimizerTool."""
|
35 |
+
patient_data: Dict[str, Any] = Field(
|
36 |
+
description=(
|
37 |
+
"A dictionary containing relevant patient characteristics. "
|
38 |
+
"Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, "
|
39 |
+
"'allergies': ['penicillin']}. This should be populated from the overall patient context."
|
40 |
+
)
|
41 |
+
)
|
42 |
+
current_treatments: List[str] = Field(
|
43 |
+
description="A list of current medications or therapies the patient is on (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])."
|
44 |
+
)
|
45 |
+
conditions: List[str] = Field(
|
46 |
+
description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension', 'Chronic Back Pain'])."
|
47 |
+
)
|
48 |
+
# Optional: Add other specific parameters your optimizer might need
|
49 |
+
# optimization_goal: Optional[str] = Field(default=None, description="Specific goal for the optimization, e.g., 'minimize side effects', 'maximize efficacy for condition X'.")
|
50 |
+
|
51 |
+
class QuantumTreatmentOptimizerTool(BaseTool):
|
52 |
+
name: str = "quantum_treatment_optimizer"
|
53 |
+
description: str = (
|
54 |
+
"A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans "
|
55 |
+
"based on provided patient data, current treatments, and diagnosed conditions. "
|
56 |
+
"Use this when seeking novel therapeutic strategies, needing to optimize complex polypharmacy, "
|
57 |
+
"or exploring options for patients with multiple comorbidities. "
|
58 |
+
"You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'."
|
59 |
+
)
|
60 |
+
args_schema: Type[BaseModel] = QuantumOptimizerInput
|
61 |
+
# return_direct: bool = False # Usually False, so the agent can process the tool's output
|
62 |
+
|
63 |
+
def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str:
|
64 |
+
"""
|
65 |
+
Formats the structured output from optimize_treatment into a natural language string
|
66 |
+
that the LLM can easily understand and use in its response to the user.
|
67 |
+
"""
|
68 |
+
if not optimization_output or not isinstance(optimization_output, dict):
|
69 |
+
return "The optimizer did not return a structured result."
|
70 |
+
|
71 |
+
summary_lines = ["Quantum Treatment Optimizer Suggestions:"]
|
72 |
+
|
73 |
+
if "suggested_actions" in optimization_output and optimization_output["suggested_actions"]:
|
74 |
+
summary_lines.append(" Key Suggested Actions:")
|
75 |
+
for action in optimization_output["suggested_actions"]:
|
76 |
+
summary_lines.append(f" - {action}")
|
77 |
+
|
78 |
+
if "primary_focus_condition" in optimization_output:
|
79 |
+
summary_lines.append(f" Primary Focus: Addressing {optimization_output['primary_focus_condition']}.")
|
80 |
+
|
81 |
+
if "confidence_level_simulated" in optimization_output:
|
82 |
+
summary_lines.append(f" Simulated Confidence Level: {optimization_output['confidence_level_simulated']:.0%}") # Format as percentage
|
83 |
+
|
84 |
+
if "summary_notes" in optimization_output:
|
85 |
+
summary_lines.append(f" Summary Notes: {optimization_output['summary_notes']}")
|
86 |
+
|
87 |
+
if "simulated_optimization_id" in optimization_output:
|
88 |
+
summary_lines.append(f" (Simulated Optimization ID: {optimization_output['simulated_optimization_id']})")
|
89 |
+
|
90 |
+
if len(summary_lines) == 1: # Only the initial title
|
91 |
+
return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)}"
|
92 |
+
|
93 |
+
return "\n".join(summary_lines)
|
94 |
+
|
95 |
+
def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
96 |
+
"""
|
97 |
+
Executes the quantum treatment optimization.
|
98 |
+
The arguments (patient_data, current_treatments, conditions) are automatically populated
|
99 |
+
by LangChain from the 'action_input' dictionary provided by the LLM,
|
100 |
+
based on the `args_schema` (QuantumOptimizerInput).
|
101 |
+
"""
|
102 |
+
# Any additional kwargs passed by the LLM in action_input that are not in the primary schema
|
103 |
+
# will be available in `kwargs` if your BaseTool is set up to accept them or if you handle them.
|
104 |
+
# For Pydantic validated args_schema, only defined fields are passed directly as named args.
|
105 |
+
|
106 |
+
app_logger.info(
|
107 |
+
f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, "
|
108 |
+
f"Treatments: {current_treatments}, Conditions: {conditions}"
|
109 |
+
)
|
110 |
+
log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)})
|
111 |
+
|
112 |
+
# Basic validation (Pydantic handles schema, but you can add business logic checks)
|
113 |
+
if not patient_data or not conditions:
|
114 |
+
missing_info = []
|
115 |
+
if not patient_data: missing_info.append("'patient_data'")
|
116 |
+
if not conditions: missing_info.append("'conditions'")
|
117 |
+
return f"Error: Insufficient information provided for optimization. Missing: {', '.join(missing_info)}. Please provide comprehensive details."
|
118 |
+
|
119 |
+
try:
|
120 |
+
# Call your actual optimization logic
|
121 |
+
optimization_output: Dict[str, Any] = optimize_treatment(
|
122 |
+
patient_data=patient_data,
|
123 |
+
current_treatments=current_treatments,
|
124 |
+
conditions=conditions
|
125 |
+
)
|
126 |
+
app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...") # Log snippet
|
127 |
+
|
128 |
+
# Format the potentially complex result into a string for the LLM
|
129 |
+
formatted_result = self._format_results_for_llm(optimization_output)
|
130 |
+
app_logger.info(f"Quantum optimizer formatted result for LLM: {formatted_result}")
|
131 |
+
return formatted_result
|
132 |
+
|
133 |
+
except ImportError as ie: # In case the mock was not used and import still fails
|
134 |
+
app_logger.error(f"ImportError in QuantumTreatmentOptimizerTool (quantum.optimizer likely missing): {ie}", exc_info=True)
|
135 |
+
return "Error: The core optimization module is currently unavailable."
|
136 |
+
except Exception as e:
|
137 |
+
app_logger.error(f"Unexpected error during quantum optimization process: {e}", exc_info=True)
|
138 |
+
return f"Error encountered during the optimization process: {str(e)}. Please ensure input data is correctly formatted."
|
139 |
+
|
140 |
+
async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str:
|
141 |
+
"""
|
142 |
+
Asynchronous execution of the quantum treatment optimization.
|
143 |
+
For truly async behavior, `optimize_treatment` should be an async function,
|
144 |
+
or this method should run the sync `optimize_treatment` in a thread pool.
|
145 |
+
"""
|
146 |
+
app_logger.info(
|
147 |
+
f"Quantum Optimizer Tool (async) called. Patient Data Keys: {list(patient_data.keys())}, "
|
148 |
+
f"Treatments: {current_treatments}, Conditions: {conditions}"
|
149 |
+
)
|
150 |
+
# For now, for simplicity with Streamlit, we can call the synchronous version.
|
151 |
+
# If optimize_treatment is blocking, consider `asyncio.to_thread` for true async execution.
|
152 |
+
# import asyncio
|
153 |
+
# return await asyncio.to_thread(self._run, patient_data, current_treatments, conditions, **kwargs)
|
154 |
+
return self._run(patient_data, current_treatments, conditions, **kwargs)
|
tools/quantum_tool.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
from langchain.tools import BaseTool
|
2 |
-
from typing import Type, List, Dict, Any
|
3 |
-
from pydantic import BaseModel, Field
|
4 |
-
from quantum.optimizer import optimize_treatment
|
5 |
-
from services.logger import app_logger
|
6 |
-
from services.metrics import log_tool_usage
|
7 |
-
|
8 |
-
class QuantumOptimizerInput(BaseModel):
|
9 |
-
patient_data: Dict[str, Any] = Field(description="Dictionary of relevant patient characteristics (e.g., {'age': 55, 'gender': 'male'}).")
|
10 |
-
current_treatments: List[str] = Field(description="List of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg']).")
|
11 |
-
conditions: List[str] = Field(description="List of diagnosed conditions (e.g., ['Type 2 Diabetes', 'Hypertension']).")
|
12 |
-
|
13 |
-
class QuantumTreatmentOptimizerTool(BaseTool):
|
14 |
-
name: str = "quantum_treatment_optimizer"
|
15 |
-
description: str = (
|
16 |
-
"A specialized tool that uses quantum-inspired algorithms to suggest optimized treatment plans. "
|
17 |
-
"Provide patient data, current treatments, and diagnosed conditions. "
|
18 |
-
"Use this when seeking novel therapeutic strategies or to optimize complex polypharmacy."
|
19 |
-
)
|
20 |
-
args_schema: Type[BaseModel] = QuantumOptimizerInput
|
21 |
-
|
22 |
-
def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str:
|
23 |
-
app_logger.info(f"Quantum Optimizer Tool called with: {patient_data}, {current_treatments}, {conditions}")
|
24 |
-
log_tool_usage(self.name)
|
25 |
-
try:
|
26 |
-
result = optimize_treatment(patient_data, current_treatments, conditions)
|
27 |
-
# Format result for LLM
|
28 |
-
# Example: "Optimized suggestions: ..., Confidence: ..., Summary: ..."
|
29 |
-
# You might want to pretty-print the dict or convert to a string summary
|
30 |
-
return f"Quantum Optimizer Results: {result}"
|
31 |
-
except Exception as e:
|
32 |
-
app_logger.error(f"Error in QuantumTreatmentOptimizerTool: {e}")
|
33 |
-
return f"Error during quantum optimization: {str(e)}"
|
34 |
-
|
35 |
-
async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> str:
|
36 |
-
# For simplicity, using sync version for now
|
37 |
-
return self._run(patient_data, current_treatments, conditions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|