from langchain.tools import BaseTool from typing import Type from pydantic import BaseModel, Field from clinical_nlp.umls_bioportal import search_umls_term from services.logger import app_logger from services.metrics import log_tool_usage class UMLSInput(BaseModel): term: str = Field(description="The medical term to search for in UMLS.") class UMLSLookupTool(BaseTool): name: str = "umls_lookup" description: str = ( "Useful for looking up medical terms, concepts, and their definitions or CUIs " "(Concept Unique Identifiers) in the Unified Medical Language System (UMLS). " "Provide a specific medical term." ) args_schema: Type[BaseModel] = UMLSInput def _run(self, term: str) -> str: app_logger.info(f"UMLS Tool called with term: {term}") log_tool_usage(self.name) results = search_umls_term(term) if "error" in results: return f"Error from UMLS lookup: {results['error']}" # Format results for LLM consumption if results.get("results"): formatted_results = [] for res in results["results"][:3]: # Limit to 3 results formatted_results.append(f"- Term: {res.get('name', 'N/A')}, CUI: {res.get('ui', 'N/A')}") # Assuming 'ui' for CUI based on UMLS API return "UMLS Results:\n" + "\n".join(formatted_results) if formatted_results else "No results found in UMLS." return "No results found or unexpected format from UMLS." async def _arun(self, term: str) -> str: # For simplicity, using sync version for now return self._run(term)