# /home/user/app/tools/quantum_treatment_optimizer_tool.py from langchain_core.tools import BaseTool from typing import Type, List, Dict, Any, Optional from pydantic import BaseModel, Field from services.logger import app_logger from services.metrics import log_tool_usage try: from quantum.optimizer import optimize_treatment except ImportError: app_logger.warning("Actual 'quantum.optimizer.optimize_treatment' not found. Using mock function for QuantumTreatmentOptimizerTool.") def optimize_treatment(patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str]) -> Dict[str, Any]: import random, time # For mock time.sleep(random.uniform(0.5,1.0)) mock_actions = [f"Mock action for {conditions[0] if conditions else 'general health'} considering {patient_data.get('age', 'N/A')} years old."] if current_treatments: mock_actions.append(f"Review interaction with {current_treatments[0]}.") return { "simulated_optimization_id": f"QO-MOCK-{random.randint(1000,9999)}", "suggested_actions": mock_actions, "primary_focus_condition": conditions[0] if conditions else "Overall Assessment", "confidence_level_simulated": random.uniform(0.7, 0.9), "summary_notes": "This is a simulated optimization result. Always consult with medical professionals for actual treatment decisions.", } class QuantumOptimizerInput(BaseModel): patient_data: Dict[str, Any] = Field( description=( "A dictionary of relevant patient characteristics. " "Examples: {'age': 55, 'gender': 'Male', 'relevant_labs': {'creatinine': 1.2, 'hbA1c': 7.5}, " "'allergies': ['penicillin']}. This should be populated from the overall patient context." ) ) current_treatments: List[str] = Field( description="A list of current medications or therapies (e.g., ['Aspirin 81mg', 'Metformin 500mg OD'])." ) conditions: List[str] = Field( description="A list of primary diagnosed conditions or symptoms to be addressed (e.g., ['Type 2 Diabetes', 'Hypertension'])." ) class QuantumTreatmentOptimizerTool(BaseTool): name: str = "quantum_treatment_optimizer" description: str = ( "A specialized (simulated) tool that uses advanced algorithms to suggest optimized or alternative treatment plans " "based on provided patient data, current treatments, and diagnosed conditions. " "Use this when seeking novel therapeutic strategies, or to optimize complex polypharmacy. " "You MUST provide detailed 'patient_data', 'current_treatments', and 'conditions'." ) args_schema: Type[BaseModel] = QuantumOptimizerInput def _format_results_for_llm(self, optimization_output: Dict[str, Any]) -> str: if not optimization_output or not isinstance(optimization_output, dict): return "The optimizer did not return a structured result or the result was empty." summary_lines = ["Quantum Treatment Optimizer Suggestions (Simulated):"] actions = optimization_output.get("suggested_actions", []) if actions: summary_lines.append(" Key Suggested Actions/Considerations:") for action_str in actions: summary_lines.append(f" - {action_str}") focus = optimization_output.get("primary_focus_condition") if focus: summary_lines.append(f" Primary Focus: Addressing {focus}.") confidence = optimization_output.get("confidence_level_simulated") if confidence is not None: summary_lines.append(f" Simulated Confidence Level: {confidence:.0%}") notes = optimization_output.get("summary_notes") if notes: summary_lines.append(f" Summary Notes: {notes}") sim_id = optimization_output.get("simulated_optimization_id") if sim_id: summary_lines.append(f" (Simulated Optimization ID: {sim_id})") if len(summary_lines) == 1: return f"The optimizer processed the request but provided no specific actionable suggestions. Raw data: {str(optimization_output)[:300]}" return "\n".join(summary_lines) def _run(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str: app_logger.info( f"Quantum Optimizer Tool called. Patient Data Keys: {list(patient_data.keys())}, " f"Treatments: {current_treatments}, Conditions: {conditions}" ) log_tool_usage(self.name, {"conditions_count": len(conditions), "treatments_count": len(current_treatments)}) if not patient_data or not conditions: missing = [item for item, val in [("'patient_data'", patient_data), ("'conditions'", conditions)] if not val] return f"Error: Insufficient information. Missing: {', '.join(missing)}. Provide comprehensive details." try: optimization_output: Dict[str, Any] = optimize_treatment( patient_data=patient_data, current_treatments=current_treatments, conditions=conditions ) app_logger.info(f"Quantum optimizer raw output: {str(optimization_output)[:500]}...") return self._format_results_for_llm(optimization_output) except ImportError as ie: app_logger.error(f"ImportError for quantum.optimizer: {ie}", exc_info=True) return "Error: The core optimization module is currently unavailable." except Exception as e: app_logger.error(f"Unexpected error during quantum optimization: {e}", exc_info=True) return f"Error in optimization process: {str(e)}. Ensure input data is correct." async def _arun(self, patient_data: Dict[str, Any], current_treatments: List[str], conditions: List[str], **kwargs: Any) -> str: return self._run(patient_data, current_treatments, conditions, **kwargs)