Update pubmed_utils.py
Browse files- pubmed_utils.py +102 -96
pubmed_utils.py
CHANGED
@@ -1,96 +1,102 @@
|
|
1 |
-
import requests
|
2 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
-
import nltk
|
4 |
-
nltk.download('punkt')
|
5 |
-
from nltk.tokenize import sent_tokenize
|
6 |
-
|
7 |
-
from transformers import pipeline
|
8 |
-
from config import MY_PUBMED_EMAIL
|
9 |
-
|
10 |
-
#
|
11 |
-
summarizer = pipeline(
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
"
|
24 |
-
"
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
"
|
42 |
-
"
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
""
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
+
import nltk
|
4 |
+
nltk.download('punkt')
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
+
|
7 |
+
from transformers import pipeline
|
8 |
+
from config import MY_PUBMED_EMAIL
|
9 |
+
|
10 |
+
# Summarization pipeline for PubMed abstracts
|
11 |
+
summarizer = pipeline(
|
12 |
+
"summarization",
|
13 |
+
model="facebook/bart-large-cnn",
|
14 |
+
tokenizer="facebook/bart-large-cnn"
|
15 |
+
)
|
16 |
+
|
17 |
+
def search_pubmed(query, max_results=3):
|
18 |
+
"""
|
19 |
+
Searches PubMed via ESearch. Returns list of PMIDs.
|
20 |
+
"""
|
21 |
+
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
22 |
+
params = {
|
23 |
+
"db": "pubmed",
|
24 |
+
"term": query,
|
25 |
+
"retmax": max_results,
|
26 |
+
"retmode": "json",
|
27 |
+
"tool": "ElysiumRAG",
|
28 |
+
"email": MY_PUBMED_EMAIL
|
29 |
+
}
|
30 |
+
resp = requests.get(base_url, params=params)
|
31 |
+
resp.raise_for_status()
|
32 |
+
data = resp.json()
|
33 |
+
return data.get("esearchresult", {}).get("idlist", [])
|
34 |
+
|
35 |
+
def fetch_one_abstract(pmid):
|
36 |
+
"""
|
37 |
+
Fetches a single abstract for the given PMID.
|
38 |
+
"""
|
39 |
+
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
40 |
+
params = {
|
41 |
+
"db": "pubmed",
|
42 |
+
"retmode": "text",
|
43 |
+
"rettype": "abstract",
|
44 |
+
"id": pmid,
|
45 |
+
"tool": "ElysiumRAG",
|
46 |
+
"email": MY_PUBMED_EMAIL
|
47 |
+
}
|
48 |
+
resp = requests.get(base_url, params=params)
|
49 |
+
resp.raise_for_status()
|
50 |
+
raw_text = resp.text.strip() or "No abstract text found."
|
51 |
+
return (pmid, raw_text)
|
52 |
+
|
53 |
+
def fetch_pubmed_abstracts(pmids):
|
54 |
+
"""
|
55 |
+
Parallel fetching of multiple abstracts.
|
56 |
+
"""
|
57 |
+
if not pmids:
|
58 |
+
return {}
|
59 |
+
results_map = {}
|
60 |
+
with ThreadPoolExecutor(max_workers=min(len(pmids), 5)) as executor:
|
61 |
+
future_to_pmid = {executor.submit(fetch_one_abstract, pmid): pmid for pmid in pmids}
|
62 |
+
for future in as_completed(future_to_pmid):
|
63 |
+
pmid = future_to_pmid[future]
|
64 |
+
try:
|
65 |
+
pmid_result, text = future.result()
|
66 |
+
results_map[pmid_result] = text
|
67 |
+
except Exception as e:
|
68 |
+
results_map[pmid] = f"Error: {str(e)}"
|
69 |
+
return results_map
|
70 |
+
|
71 |
+
def chunk_and_summarize(abstract_text, chunk_size=512):
|
72 |
+
"""
|
73 |
+
Splits large abstracts by sentences, summarizes each chunk, then concatenates.
|
74 |
+
"""
|
75 |
+
sentences = sent_tokenize(abstract_text)
|
76 |
+
chunks = []
|
77 |
+
|
78 |
+
current_chunk = []
|
79 |
+
current_length = 0
|
80 |
+
for sent in sentences:
|
81 |
+
tokens_in_sent = len(sent.split())
|
82 |
+
if current_length + tokens_in_sent > chunk_size:
|
83 |
+
chunks.append(" ".join(current_chunk))
|
84 |
+
current_chunk = []
|
85 |
+
current_length = 0
|
86 |
+
current_chunk.append(sent)
|
87 |
+
current_length += tokens_in_sent
|
88 |
+
|
89 |
+
if current_chunk:
|
90 |
+
chunks.append(" ".join(current_chunk))
|
91 |
+
|
92 |
+
summarized_pieces = []
|
93 |
+
for c in chunks:
|
94 |
+
summary_out = summarizer(
|
95 |
+
c,
|
96 |
+
max_length=100,
|
97 |
+
min_length=30,
|
98 |
+
do_sample=False
|
99 |
+
)
|
100 |
+
summarized_pieces.append(summary_out[0]['summary_text'])
|
101 |
+
|
102 |
+
return " ".join(summarized_pieces).strip()
|