Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,15 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
9 |
import streamlit as st
|
10 |
import pandas as pd
|
11 |
|
|
|
|
|
|
|
12 |
# NLP
|
13 |
import nltk
|
14 |
nltk.download('punkt')
|
15 |
from nltk.tokenize import sent_tokenize
|
16 |
|
17 |
-
#
|
18 |
from transformers import pipeline
|
19 |
|
20 |
# Optional: OpenAI and Google Generative AI
|
@@ -24,30 +27,17 @@ import google.generativeai as genai
|
|
24 |
###############################################################################
|
25 |
# CONFIG & ENV #
|
26 |
###############################################################################
|
27 |
-
|
28 |
-
In your Hugging Face Space:
|
29 |
-
1. Add environment secrets:
|
30 |
-
- OPENAI_API_KEY (if using OpenAI)
|
31 |
-
- GEMINI_API_KEY (if using Google PaLM/Gemini)
|
32 |
-
- MY_PUBMED_EMAIL (to identify yourself to NCBI)
|
33 |
-
2. In requirements.txt, install:
|
34 |
-
- streamlit
|
35 |
-
- requests
|
36 |
-
- nltk
|
37 |
-
- transformers
|
38 |
-
- torch
|
39 |
-
- openai (if using OpenAI)
|
40 |
-
- google-generativeai (if using Gemini)
|
41 |
-
- pandas
|
42 |
-
"""
|
43 |
|
44 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
45 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "")
|
46 |
MY_PUBMED_EMAIL = os.getenv("MY_PUBMED_EMAIL", "[email protected]")
|
47 |
|
|
|
48 |
if OPENAI_API_KEY:
|
49 |
openai.api_key = OPENAI_API_KEY
|
50 |
|
|
|
51 |
if GEMINI_API_KEY:
|
52 |
genai.configure(api_key=GEMINI_API_KEY)
|
53 |
|
@@ -58,12 +48,12 @@ if GEMINI_API_KEY:
|
|
58 |
def load_summarizer():
|
59 |
"""
|
60 |
Load a summarization model (e.g., BART, PEGASUS, T5).
|
61 |
-
For a more concise summarization, consider
|
62 |
For a balanced approach, 'facebook/bart-large-cnn' is popular.
|
63 |
"""
|
64 |
return pipeline(
|
65 |
-
"summarization",
|
66 |
-
model="facebook/bart-large-cnn",
|
67 |
tokenizer="facebook/bart-large-cnn"
|
68 |
)
|
69 |
|
@@ -109,11 +99,9 @@ def fetch_one_abstract(pmid):
|
|
109 |
resp = requests.get(base_url, params=params)
|
110 |
resp.raise_for_status()
|
111 |
raw_text = resp.text.strip()
|
112 |
-
|
113 |
-
# If there's no clear text returned, mark as empty
|
114 |
if not raw_text:
|
115 |
return (pmid, "No abstract text found.")
|
116 |
-
|
117 |
return (pmid, raw_text)
|
118 |
|
119 |
def fetch_pubmed_abstracts(pmids):
|
@@ -122,6 +110,9 @@ def fetch_pubmed_abstracts(pmids):
|
|
122 |
Returns {pmid: abstract_text}.
|
123 |
"""
|
124 |
abstracts_map = {}
|
|
|
|
|
|
|
125 |
with ThreadPoolExecutor(max_workers=min(len(pmids), 5)) as executor:
|
126 |
future_to_pmid = {executor.submit(fetch_one_abstract, pmid): pmid for pmid in pmids}
|
127 |
for future in as_completed(future_to_pmid):
|
@@ -142,10 +133,9 @@ def chunk_and_summarize(abstract_text, chunk_size=512):
|
|
142 |
then summarizes each chunk with the Hugging Face pipeline.
|
143 |
Returns a combined summary for the entire abstract.
|
144 |
"""
|
145 |
-
# We first split by sentences
|
146 |
sentences = sent_tokenize(abstract_text)
|
147 |
chunks = []
|
148 |
-
|
149 |
current_chunk = []
|
150 |
current_length = 0
|
151 |
for sent in sentences:
|
@@ -155,6 +145,7 @@ def chunk_and_summarize(abstract_text, chunk_size=512):
|
|
155 |
chunks.append(" ".join(current_chunk))
|
156 |
current_chunk = []
|
157 |
current_length = 0
|
|
|
158 |
current_chunk.append(sent)
|
159 |
current_length += tokens_in_sent
|
160 |
|
@@ -162,18 +153,16 @@ def chunk_and_summarize(abstract_text, chunk_size=512):
|
|
162 |
if current_chunk:
|
163 |
chunks.append(" ".join(current_chunk))
|
164 |
|
165 |
-
# Summarize each chunk to avoid hitting token or length constraints
|
166 |
summarized_pieces = []
|
167 |
for c in chunks:
|
168 |
summary_out = summarizer(
|
169 |
c,
|
170 |
-
max_length=100, #
|
171 |
min_length=30,
|
172 |
do_sample=False
|
173 |
)
|
174 |
summarized_pieces.append(summary_out[0]['summary_text'])
|
175 |
-
|
176 |
-
# Combine partial summaries into one final text
|
177 |
final_summary = " ".join(summarized_pieces)
|
178 |
return final_summary.strip()
|
179 |
|
@@ -218,17 +207,17 @@ def gemini_chat(system_prompt, user_message, model_name="models/chat-bison-001",
|
|
218 |
###############################################################################
|
219 |
def build_system_prompt_with_refs(pmids, summarized_map):
|
220 |
"""
|
221 |
-
Creates a system prompt that includes the summarized abstracts alongside
|
222 |
-
labeled references.
|
223 |
"""
|
224 |
-
# Example of labeling references: [Ref1], [Ref2], etc.
|
225 |
system_context = (
|
226 |
"You have access to the following summarized PubMed articles. "
|
227 |
-
"When relevant, cite them
|
228 |
)
|
229 |
for idx, pmid in enumerate(pmids, start=1):
|
230 |
ref_label = f"[Ref{idx}]"
|
231 |
system_context += f"{ref_label} (PMID {pmid}): {summarized_map[pmid]}\n\n"
|
|
|
232 |
system_context += "Use this contextual info to provide a concise, evidence-based answer."
|
233 |
return system_context
|
234 |
|
@@ -236,12 +225,13 @@ def build_system_prompt_with_refs(pmids, summarized_map):
|
|
236 |
# STREAMLIT APP #
|
237 |
###############################################################################
|
238 |
def main():
|
239 |
-
st.set_page_config(
|
240 |
st.title("Enhanced RAG + PubMed: Production-Ready Medical Insights")
|
241 |
|
242 |
st.markdown("""
|
243 |
-
**Welcome** to an advanced demonstration of **Retrieval-Augmented Generation (RAG)**
|
244 |
-
using PubMed E-utilities, Hugging Face Summarization, and optional LLM calls
|
|
|
245 |
|
246 |
This version includes:
|
247 |
- **Parallel** fetching for multiple PMIDs
|
@@ -261,7 +251,6 @@ def main():
|
|
261 |
height=120
|
262 |
)
|
263 |
|
264 |
-
# Sidebar or columns for parameters
|
265 |
col1, col2 = st.columns(2)
|
266 |
with col1:
|
267 |
max_papers = st.slider(
|
@@ -284,7 +273,10 @@ def main():
|
|
284 |
min_value=256,
|
285 |
max_value=1024,
|
286 |
value=512,
|
287 |
-
help=
|
|
|
|
|
|
|
288 |
)
|
289 |
|
290 |
if st.button("Run Enhanced RAG Pipeline"):
|
@@ -295,12 +287,12 @@ def main():
|
|
295 |
# 1. PubMed Search
|
296 |
with st.spinner("Searching PubMed..."):
|
297 |
pmids = search_pubmed(query=user_query, max_results=max_papers)
|
298 |
-
|
299 |
if not pmids:
|
300 |
st.error("No matching PubMed results. Try a different query.")
|
301 |
return
|
302 |
|
303 |
-
# 2. Fetch
|
304 |
with st.spinner("Fetching and summarizing abstracts..."):
|
305 |
abstracts_map = fetch_pubmed_abstracts(pmids)
|
306 |
summarized_map = {}
|
@@ -318,8 +310,8 @@ def main():
|
|
318 |
st.write(summarized_map[pmid])
|
319 |
st.write("---")
|
320 |
|
321 |
-
# 4. Build
|
322 |
-
st.subheader("Final Answer")
|
323 |
system_prompt = build_system_prompt_with_refs(pmids, summarized_map)
|
324 |
|
325 |
with st.spinner("Generating final answer..."):
|
@@ -331,23 +323,24 @@ def main():
|
|
331 |
st.write(answer)
|
332 |
st.success("RAG Pipeline Complete.")
|
333 |
|
334 |
-
# Production
|
335 |
st.markdown("---")
|
336 |
st.markdown("""
|
337 |
-
### Production-Ready Enhancements
|
338 |
1. **Vector Databases & Advanced Retrieval**
|
339 |
-
- For large-scale usage, index PubMed articles in a vector DB
|
340 |
2. **Citation Parsing**
|
341 |
-
- Automatically detect which
|
342 |
3. **Multi-Lingual**
|
343 |
-
- Integrate translation pipelines for non-English queries or abstracts.
|
344 |
4. **Rate Limiting**
|
345 |
-
- Respect NCBI's ~3 requests/sec guideline if
|
346 |
-
5. **
|
347 |
-
-
|
348 |
-
6. **
|
349 |
-
-
|
350 |
""")
|
351 |
|
|
|
352 |
if __name__ == "__main__":
|
353 |
main()
|
|
|
9 |
import streamlit as st
|
10 |
import pandas as pd
|
11 |
|
12 |
+
# Set page config FIRST, before any other Streamlit calls:
|
13 |
+
st.set_page_config(page_title="Enhanced RAG + PubMed", layout="wide")
|
14 |
+
|
15 |
# NLP
|
16 |
import nltk
|
17 |
nltk.download('punkt')
|
18 |
from nltk.tokenize import sent_tokenize
|
19 |
|
20 |
+
# Transformers for summarization
|
21 |
from transformers import pipeline
|
22 |
|
23 |
# Optional: OpenAI and Google Generative AI
|
|
|
27 |
###############################################################################
|
28 |
# CONFIG & ENV #
|
29 |
###############################################################################
|
30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
33 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "")
|
34 |
MY_PUBMED_EMAIL = os.getenv("MY_PUBMED_EMAIL", "[email protected]")
|
35 |
|
36 |
+
# Configure OpenAI if key is provided
|
37 |
if OPENAI_API_KEY:
|
38 |
openai.api_key = OPENAI_API_KEY
|
39 |
|
40 |
+
# Configure Google PaLM / Gemini if key is provided
|
41 |
if GEMINI_API_KEY:
|
42 |
genai.configure(api_key=GEMINI_API_KEY)
|
43 |
|
|
|
48 |
def load_summarizer():
|
49 |
"""
|
50 |
Load a summarization model (e.g., BART, PEGASUS, T5).
|
51 |
+
For a more concise summarization, consider 'google/pegasus-xsum'.
|
52 |
For a balanced approach, 'facebook/bart-large-cnn' is popular.
|
53 |
"""
|
54 |
return pipeline(
|
55 |
+
"summarization",
|
56 |
+
model="facebook/bart-large-cnn",
|
57 |
tokenizer="facebook/bart-large-cnn"
|
58 |
)
|
59 |
|
|
|
99 |
resp = requests.get(base_url, params=params)
|
100 |
resp.raise_for_status()
|
101 |
raw_text = resp.text.strip()
|
102 |
+
|
|
|
103 |
if not raw_text:
|
104 |
return (pmid, "No abstract text found.")
|
|
|
105 |
return (pmid, raw_text)
|
106 |
|
107 |
def fetch_pubmed_abstracts(pmids):
|
|
|
110 |
Returns {pmid: abstract_text}.
|
111 |
"""
|
112 |
abstracts_map = {}
|
113 |
+
if not pmids:
|
114 |
+
return abstracts_map
|
115 |
+
|
116 |
with ThreadPoolExecutor(max_workers=min(len(pmids), 5)) as executor:
|
117 |
future_to_pmid = {executor.submit(fetch_one_abstract, pmid): pmid for pmid in pmids}
|
118 |
for future in as_completed(future_to_pmid):
|
|
|
133 |
then summarizes each chunk with the Hugging Face pipeline.
|
134 |
Returns a combined summary for the entire abstract.
|
135 |
"""
|
|
|
136 |
sentences = sent_tokenize(abstract_text)
|
137 |
chunks = []
|
138 |
+
|
139 |
current_chunk = []
|
140 |
current_length = 0
|
141 |
for sent in sentences:
|
|
|
145 |
chunks.append(" ".join(current_chunk))
|
146 |
current_chunk = []
|
147 |
current_length = 0
|
148 |
+
|
149 |
current_chunk.append(sent)
|
150 |
current_length += tokens_in_sent
|
151 |
|
|
|
153 |
if current_chunk:
|
154 |
chunks.append(" ".join(current_chunk))
|
155 |
|
|
|
156 |
summarized_pieces = []
|
157 |
for c in chunks:
|
158 |
summary_out = summarizer(
|
159 |
c,
|
160 |
+
max_length=100, # Tweak for desired summary length
|
161 |
min_length=30,
|
162 |
do_sample=False
|
163 |
)
|
164 |
summarized_pieces.append(summary_out[0]['summary_text'])
|
165 |
+
|
|
|
166 |
final_summary = " ".join(summarized_pieces)
|
167 |
return final_summary.strip()
|
168 |
|
|
|
207 |
###############################################################################
|
208 |
def build_system_prompt_with_refs(pmids, summarized_map):
|
209 |
"""
|
210 |
+
Creates a system prompt that includes the summarized abstracts alongside
|
211 |
+
labeled references (e.g., [Ref1]) so the LLM can cite them in the final answer.
|
212 |
"""
|
|
|
213 |
system_context = (
|
214 |
"You have access to the following summarized PubMed articles. "
|
215 |
+
"When relevant, cite them using their reference label.\n\n"
|
216 |
)
|
217 |
for idx, pmid in enumerate(pmids, start=1):
|
218 |
ref_label = f"[Ref{idx}]"
|
219 |
system_context += f"{ref_label} (PMID {pmid}): {summarized_map[pmid]}\n\n"
|
220 |
+
|
221 |
system_context += "Use this contextual info to provide a concise, evidence-based answer."
|
222 |
return system_context
|
223 |
|
|
|
225 |
# STREAMLIT APP #
|
226 |
###############################################################################
|
227 |
def main():
|
228 |
+
# From here on, we do NOT call st.set_page_config() again (to avoid the error).
|
229 |
st.title("Enhanced RAG + PubMed: Production-Ready Medical Insights")
|
230 |
|
231 |
st.markdown("""
|
232 |
+
**Welcome** to an advanced demonstration of **Retrieval-Augmented Generation (RAG)**
|
233 |
+
using PubMed E-utilities, Hugging Face Summarization, and optional LLM calls
|
234 |
+
(OpenAI or Gemini).
|
235 |
|
236 |
This version includes:
|
237 |
- **Parallel** fetching for multiple PMIDs
|
|
|
251 |
height=120
|
252 |
)
|
253 |
|
|
|
254 |
col1, col2 = st.columns(2)
|
255 |
with col1:
|
256 |
max_papers = st.slider(
|
|
|
273 |
min_value=256,
|
274 |
max_value=1024,
|
275 |
value=512,
|
276 |
+
help=(
|
277 |
+
"Larger chunks produce fewer summarization calls, but risk token limits. "
|
278 |
+
"Smaller chunks produce more robust summaries."
|
279 |
+
)
|
280 |
)
|
281 |
|
282 |
if st.button("Run Enhanced RAG Pipeline"):
|
|
|
287 |
# 1. PubMed Search
|
288 |
with st.spinner("Searching PubMed..."):
|
289 |
pmids = search_pubmed(query=user_query, max_results=max_papers)
|
290 |
+
|
291 |
if not pmids:
|
292 |
st.error("No matching PubMed results. Try a different query.")
|
293 |
return
|
294 |
|
295 |
+
# 2. Fetch & Summarize
|
296 |
with st.spinner("Fetching and summarizing abstracts..."):
|
297 |
abstracts_map = fetch_pubmed_abstracts(pmids)
|
298 |
summarized_map = {}
|
|
|
310 |
st.write(summarized_map[pmid])
|
311 |
st.write("---")
|
312 |
|
313 |
+
# 4. Build Prompt & Generate Final Answer
|
314 |
+
st.subheader("RAG-Enhanced Final Answer")
|
315 |
system_prompt = build_system_prompt_with_refs(pmids, summarized_map)
|
316 |
|
317 |
with st.spinner("Generating final answer..."):
|
|
|
323 |
st.write(answer)
|
324 |
st.success("RAG Pipeline Complete.")
|
325 |
|
326 |
+
# Production notes:
|
327 |
st.markdown("---")
|
328 |
st.markdown("""
|
329 |
+
### Production-Ready Enhancements
|
330 |
1. **Vector Databases & Advanced Retrieval**
|
331 |
+
- For large-scale usage, index PubMed articles in a vector DB to quickly retrieve relevant passages.
|
332 |
2. **Citation Parsing**
|
333 |
+
- Automatically detect which chunk or article contributed to each sentence for more precise referencing.
|
334 |
3. **Multi-Lingual**
|
335 |
+
- Integrate translation pipelines for non-English queries or abstracts to expand global reach.
|
336 |
4. **Rate Limiting**
|
337 |
+
- Respect NCBI's ~3 requests/sec guideline if scaling up usage.
|
338 |
+
5. **Logging & Monitoring**
|
339 |
+
- In production, set up robust logging/observability for success/failure rates.
|
340 |
+
6. **Security & Privacy**
|
341 |
+
- Currently only uses public info. If patient data is included, ensure HIPAA/GDPR compliance.
|
342 |
""")
|
343 |
|
344 |
+
|
345 |
if __name__ == "__main__":
|
346 |
main()
|