Rename pubmed_utils.py to pubmed_rag.py
Browse files- pubmed_rag.py +195 -0
- pubmed_utils.py +0 -84
pubmed_rag.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import nltk
|
3 |
+
nltk.download("punkt")
|
4 |
+
from nltk.tokenize import sent_tokenize
|
5 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
6 |
+
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModel
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import os
|
10 |
+
import faiss
|
11 |
+
import numpy as np
|
12 |
+
import json
|
13 |
+
|
14 |
+
from config import (
|
15 |
+
PUBMED_EMAIL,
|
16 |
+
MAX_PUBMED_RESULTS,
|
17 |
+
DEFAULT_SUMMARIZATION_CHUNK,
|
18 |
+
VECTORDB_PATH,
|
19 |
+
EMBEDDING_MODEL_NAME
|
20 |
+
)
|
21 |
+
|
22 |
+
###############################################################################
|
23 |
+
# SUMMARIZATION & EMBEDDINGS #
|
24 |
+
###############################################################################
|
25 |
+
|
26 |
+
summarizer = pipeline(
|
27 |
+
"summarization",
|
28 |
+
model="facebook/bart-large-cnn",
|
29 |
+
tokenizer="facebook/bart-large-cnn",
|
30 |
+
)
|
31 |
+
|
32 |
+
embed_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
33 |
+
|
34 |
+
###############################################################################
|
35 |
+
# PUBMED UTIL FUNCTIONS #
|
36 |
+
###############################################################################
|
37 |
+
|
38 |
+
def search_pubmed(query, max_results=MAX_PUBMED_RESULTS):
|
39 |
+
"""
|
40 |
+
Search PubMed for PMIDs matching a query. Returns a list of PMIDs.
|
41 |
+
"""
|
42 |
+
url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
43 |
+
params = {
|
44 |
+
"db": "pubmed",
|
45 |
+
"term": query,
|
46 |
+
"retmax": max_results,
|
47 |
+
"retmode": "json",
|
48 |
+
"tool": "AdvancedMedicalAI",
|
49 |
+
"email": PUBMED_EMAIL
|
50 |
+
}
|
51 |
+
resp = requests.get(url, params=params)
|
52 |
+
resp.raise_for_status()
|
53 |
+
data = resp.json()
|
54 |
+
return data.get("esearchresult", {}).get("idlist", [])
|
55 |
+
|
56 |
+
def fetch_abstract(pmid):
|
57 |
+
"""
|
58 |
+
Fetches an abstract for a single PMID via EFetch.
|
59 |
+
"""
|
60 |
+
url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
61 |
+
params = {
|
62 |
+
"db": "pubmed",
|
63 |
+
"id": pmid,
|
64 |
+
"retmode": "text",
|
65 |
+
"rettype": "abstract",
|
66 |
+
"tool": "AdvancedMedicalAI",
|
67 |
+
"email": PUBMED_EMAIL
|
68 |
+
}
|
69 |
+
resp = requests.get(url, params=params)
|
70 |
+
resp.raise_for_status()
|
71 |
+
return resp.text.strip()
|
72 |
+
|
73 |
+
def fetch_pubmed_abstracts(pmids):
|
74 |
+
"""
|
75 |
+
Parallel fetch for multiple PMIDs. Returns dict {pmid: text}.
|
76 |
+
"""
|
77 |
+
results = {}
|
78 |
+
with ThreadPoolExecutor(max_workers=min(len(pmids), 5)) as executor:
|
79 |
+
future_to_pmid = {executor.submit(fetch_abstract, pmid): pmid for pmid in pmids}
|
80 |
+
for future in as_completed(future_to_pmid):
|
81 |
+
pmid = future_to_pmid[future]
|
82 |
+
try:
|
83 |
+
results[pmid] = future.result()
|
84 |
+
except Exception as e:
|
85 |
+
results[pmid] = f"Error fetching PMID {pmid}: {str(e)}"
|
86 |
+
return results
|
87 |
+
|
88 |
+
###############################################################################
|
89 |
+
# SUMMARIZE & CHUNK TEXT #
|
90 |
+
###############################################################################
|
91 |
+
|
92 |
+
def chunk_and_summarize(raw_text, chunk_size=DEFAULT_SUMMARIZATION_CHUNK):
|
93 |
+
"""
|
94 |
+
Splits large text into chunks by sentences, then summarizes each chunk, merging results.
|
95 |
+
"""
|
96 |
+
sentences = sent_tokenize(raw_text)
|
97 |
+
chunks = []
|
98 |
+
current_chunk = []
|
99 |
+
current_length = 0
|
100 |
+
|
101 |
+
for sent in sentences:
|
102 |
+
token_count = len(sent.split())
|
103 |
+
if current_length + token_count > chunk_size:
|
104 |
+
chunks.append(" ".join(current_chunk))
|
105 |
+
current_chunk = []
|
106 |
+
current_length = 0
|
107 |
+
current_chunk.append(sent)
|
108 |
+
current_length += token_count
|
109 |
+
|
110 |
+
if current_chunk:
|
111 |
+
chunks.append(" ".join(current_chunk))
|
112 |
+
|
113 |
+
summary_list = []
|
114 |
+
for c in chunks:
|
115 |
+
summ = summarizer(c, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
116 |
+
summary_list.append(summ)
|
117 |
+
return " ".join(summary_list)
|
118 |
+
|
119 |
+
###############################################################################
|
120 |
+
# SIMPLE VECTOR STORE (FAISS) FOR RAG #
|
121 |
+
###############################################################################
|
122 |
+
|
123 |
+
def create_or_load_faiss_index():
|
124 |
+
"""
|
125 |
+
Creates a new FAISS index or loads from disk if it exists.
|
126 |
+
"""
|
127 |
+
index_path = os.path.join(VECTORDB_PATH, "faiss_index.bin")
|
128 |
+
meta_path = os.path.join(VECTORDB_PATH, "faiss_meta.json")
|
129 |
+
|
130 |
+
if not os.path.exists(VECTORDB_PATH):
|
131 |
+
os.makedirs(VECTORDB_PATH)
|
132 |
+
|
133 |
+
if os.path.exists(index_path) and os.path.exists(meta_path):
|
134 |
+
# Load existing index
|
135 |
+
index = faiss.read_index(index_path)
|
136 |
+
with open(meta_path, "r") as f:
|
137 |
+
meta_data = json.load(f)
|
138 |
+
return index, meta_data
|
139 |
+
else:
|
140 |
+
# Create new index
|
141 |
+
index = faiss.IndexFlatL2(embed_model.get_sentence_embedding_dimension())
|
142 |
+
meta_data = {}
|
143 |
+
return index, meta_data
|
144 |
+
|
145 |
+
def save_faiss_index(index, meta_data):
|
146 |
+
"""
|
147 |
+
Saves the FAISS index and metadata to disk.
|
148 |
+
"""
|
149 |
+
index_path = os.path.join(VECTORDB_PATH, "faiss_index.bin")
|
150 |
+
meta_path = os.path.join(VECTORDB_PATH, "faiss_meta.json")
|
151 |
+
|
152 |
+
faiss.write_index(index, index_path)
|
153 |
+
with open(meta_path, "w") as f:
|
154 |
+
json.dump(meta_data, f)
|
155 |
+
|
156 |
+
def upsert_documents(docs):
|
157 |
+
"""
|
158 |
+
Takes in a dict of {pmid: text}, embeds and upserts them into the FAISS index.
|
159 |
+
Each doc is stored in 'meta_data' with pmid as key.
|
160 |
+
"""
|
161 |
+
index, meta_data = create_or_load_faiss_index()
|
162 |
+
|
163 |
+
texts = list(docs.values())
|
164 |
+
pmids = list(docs.keys())
|
165 |
+
|
166 |
+
embeddings = embed_model.encode(texts, convert_to_numpy=True)
|
167 |
+
index.add(embeddings)
|
168 |
+
|
169 |
+
# Maintain a simple meta_data: { int_id: { 'pmid': X, 'text': Y } }
|
170 |
+
# Where int_id is the row in the index
|
171 |
+
start_id = len(meta_data)
|
172 |
+
for i, pmid in enumerate(pmids):
|
173 |
+
meta_data[str(start_id + i)] = {"pmid": pmid, "text": texts[i]}
|
174 |
+
|
175 |
+
save_faiss_index(index, meta_data)
|
176 |
+
|
177 |
+
def semantic_search(query, top_k=3):
|
178 |
+
"""
|
179 |
+
Embeds 'query' and searches the FAISS index for top_k similar docs.
|
180 |
+
Returns a list of dict with 'pmid' and 'text'.
|
181 |
+
"""
|
182 |
+
index, meta_data = create_or_load_faiss_index()
|
183 |
+
|
184 |
+
query_embedding = embed_model.encode([query], convert_to_numpy=True)
|
185 |
+
distances, indices = index.search(query_embedding, top_k)
|
186 |
+
|
187 |
+
results = []
|
188 |
+
for dist, idx_list in zip(distances, indices):
|
189 |
+
for d, i in zip(dist, idx_list):
|
190 |
+
# i is row in the index, look up meta_data
|
191 |
+
doc_info = meta_data[str(i)]
|
192 |
+
results.append({"pmid": doc_info["pmid"], "text": doc_info["text"], "score": float(d)})
|
193 |
+
# Sort by ascending distance => best match first
|
194 |
+
results.sort(key=lambda x: x["score"])
|
195 |
+
return results
|
pubmed_utils.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
3 |
-
from transformers import pipeline
|
4 |
-
from config import PUBMED_EMAIL, CHUNK_SIZE
|
5 |
-
|
6 |
-
# Summarization pipeline
|
7 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
8 |
-
|
9 |
-
|
10 |
-
def search_pubmed(query, max_results=5):
|
11 |
-
"""
|
12 |
-
Search PubMed for PMIDs matching the query.
|
13 |
-
"""
|
14 |
-
url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
15 |
-
params = {
|
16 |
-
"db": "pubmed",
|
17 |
-
"term": query,
|
18 |
-
"retmax": max_results,
|
19 |
-
"retmode": "json",
|
20 |
-
"tool": "MedicalAI",
|
21 |
-
"email": PUBMED_EMAIL,
|
22 |
-
}
|
23 |
-
response = requests.get(url, params=params)
|
24 |
-
response.raise_for_status()
|
25 |
-
return response.json().get("esearchresult", {}).get("idlist", [])
|
26 |
-
|
27 |
-
|
28 |
-
def fetch_abstract(pmid):
|
29 |
-
"""
|
30 |
-
Fetch abstract for a given PubMed ID.
|
31 |
-
"""
|
32 |
-
url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
33 |
-
params = {
|
34 |
-
"db": "pubmed",
|
35 |
-
"id": pmid,
|
36 |
-
"retmode": "text",
|
37 |
-
"rettype": "abstract",
|
38 |
-
"tool": "MedicalAI",
|
39 |
-
"email": PUBMED_EMAIL,
|
40 |
-
}
|
41 |
-
response = requests.get(url, params=params)
|
42 |
-
response.raise_for_status()
|
43 |
-
return response.text.strip()
|
44 |
-
|
45 |
-
|
46 |
-
def fetch_pubmed_abstracts(pmids):
|
47 |
-
"""
|
48 |
-
Fetch multiple PubMed abstracts concurrently.
|
49 |
-
"""
|
50 |
-
results = {}
|
51 |
-
with ThreadPoolExecutor(max_workers=5) as executor:
|
52 |
-
future_to_pmid = {executor.submit(fetch_abstract, pmid): pmid for pmid in pmids}
|
53 |
-
for future in as_completed(future_to_pmid):
|
54 |
-
pmid = future_to_pmid[future]
|
55 |
-
try:
|
56 |
-
results[pmid] = future.result()
|
57 |
-
except Exception as e:
|
58 |
-
results[pmid] = f"Error fetching PMID {pmid}: {str(e)}"
|
59 |
-
return results
|
60 |
-
|
61 |
-
|
62 |
-
def summarize_text(text, chunk_size=CHUNK_SIZE):
|
63 |
-
"""
|
64 |
-
Summarize long text using a chunking strategy.
|
65 |
-
"""
|
66 |
-
sentences = text.split(". ")
|
67 |
-
chunks = []
|
68 |
-
current_chunk = []
|
69 |
-
current_length = 0
|
70 |
-
|
71 |
-
for sentence in sentences:
|
72 |
-
tokens = len(sentence.split())
|
73 |
-
if current_length + tokens > chunk_size:
|
74 |
-
chunks.append(" ".join(current_chunk))
|
75 |
-
current_chunk = []
|
76 |
-
current_length = 0
|
77 |
-
current_chunk.append(sentence)
|
78 |
-
current_length += tokens
|
79 |
-
|
80 |
-
if current_chunk:
|
81 |
-
chunks.append(" ".join(current_chunk))
|
82 |
-
|
83 |
-
summaries = [summarizer(chunk, max_length=100, min_length=30)[0]["summary_text"] for chunk in chunks]
|
84 |
-
return " ".join(summaries)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|