Spaces:
Sleeping
Sleeping
Update components/pubmed_search.py
Browse files- components/pubmed_search.py +33 -16
components/pubmed_search.py
CHANGED
@@ -17,29 +17,46 @@ def log_error(message: str):
|
|
17 |
# ---------------------------- Tool Functions ----------------------------
|
18 |
|
19 |
def search_pubmed(query: str) -> list:
|
20 |
-
"""Searches PubMed and returns a list of article IDs."""
|
21 |
try:
|
22 |
-
Entrez.email =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
handle = Entrez.esearch(db="pubmed", term=query, retmax="5")
|
24 |
record = Entrez.read(handle)
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
log_error(f"PubMed search error: {e}")
|
29 |
return [f"Error during PubMed search: {e}"]
|
30 |
|
31 |
-
def fetch_abstract(article_id: str) -> str:
|
32 |
-
"""Fetches the abstract for a given PubMed article ID."""
|
33 |
-
try:
|
34 |
-
Entrez.email = os.environ.get("ENTREZ_EMAIL", "[email protected]")
|
35 |
-
handle = Entrez.efetch(db="pubmed", id=article_id, rettype="abstract", retmode="text")
|
36 |
-
abstract = handle.read()
|
37 |
-
handle.close()
|
38 |
-
return abstract
|
39 |
-
except Exception as e:
|
40 |
-
log_error(f"Error fetching abstract for {article_id}: {e}")
|
41 |
-
return f"Error fetching abstract for {article_id}: {e}"
|
42 |
-
|
43 |
# ---------------------------- Agent Function ----------------------------
|
44 |
|
45 |
def medai_agent(query: str) -> str:
|
|
|
17 |
# ---------------------------- Tool Functions ----------------------------
|
18 |
|
19 |
def search_pubmed(query: str) -> list:
|
20 |
+
"""Searches PubMed and returns a list of article IDs using semantic search."""
|
21 |
try:
|
22 |
+
Entrez.email = ENTREZ_EMAIL
|
23 |
+
print(f"Entrez Email: {Entrez.email}") # DEBUG: Check the email being used
|
24 |
+
print(f"PubMed Query: {query}") # DEBUG: Check the query being sent
|
25 |
+
|
26 |
+
# Semantic Search Using Sentence Transformers:
|
27 |
+
from sentence_transformers import SentenceTransformer, util
|
28 |
+
|
29 |
+
model = SentenceTransformer('all-mpnet-base-v2') #Model by all-mpnet-base-v2
|
30 |
+
|
31 |
+
# Fetch PubMed IDs
|
32 |
handle = Entrez.esearch(db="pubmed", term=query, retmax="5")
|
33 |
record = Entrez.read(handle)
|
34 |
+
id_list = record["IdList"]
|
35 |
+
|
36 |
+
# Fetch abstracts for all IDs:
|
37 |
+
abstracts = []
|
38 |
+
for article_id in id_list:
|
39 |
+
abstracts.append(fetch_abstract(article_id))
|
40 |
+
|
41 |
+
# Generate embeddings for abstracts and the query:
|
42 |
+
query_embedding = model.encode(query)
|
43 |
+
abstract_embeddings = model.encode(abstracts)
|
44 |
+
|
45 |
+
# Calculate cosine similarities
|
46 |
+
similarities = util.cos_sim(query_embedding, abstract_embeddings)[0]
|
47 |
+
|
48 |
+
# Sort by similarity (higher is better)
|
49 |
+
ranked_articles = sorted(zip(id_list, similarities), key=lambda x: x[1], reverse=True)
|
50 |
+
|
51 |
+
# Extract ranked IDs:
|
52 |
+
ranked_ids = [article_id for article_id, similarity in ranked_articles]
|
53 |
+
|
54 |
+
print(f"PubMed Results: {ranked_ids}") # DEBUG: Check the results
|
55 |
+
return ranked_ids
|
56 |
except Exception as e:
|
57 |
log_error(f"PubMed search error: {e}")
|
58 |
return [f"Error during PubMed search: {e}"]
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
# ---------------------------- Agent Function ----------------------------
|
61 |
|
62 |
def medai_agent(query: str) -> str:
|