Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,65 +2,86 @@ import gradio as gr
|
|
2 |
from Bio import Entrez
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
|
|
5 |
|
6 |
# ---------------------------- Configuration ----------------------------
|
7 |
-
ENTREZ_EMAIL = "
|
8 |
-
HUGGINGFACE_API_TOKEN = "HUGGINGFACE_API_TOKEN"
|
9 |
-
SUMMARIZATION_MODEL = "facebook/bart-large-cnn"
|
10 |
-
SPACY_MODEL = "en_core_web_sm"
|
|
|
11 |
# ---------------------------- Global Variables ----------------------------
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# ---------------------------- Tool Functions ----------------------------
|
17 |
|
18 |
def search_pubmed(query: str) -> list:
|
19 |
"""Searches PubMed and returns a list of article IDs."""
|
20 |
-
Entrez.email = ENTREZ_EMAIL
|
21 |
try:
|
22 |
-
|
|
|
23 |
record = Entrez.read(handle)
|
24 |
handle.close()
|
25 |
return record["IdList"]
|
26 |
except Exception as e:
|
|
|
27 |
return [f"Error during PubMed search: {e}"]
|
28 |
|
29 |
def fetch_abstract(article_id: str) -> str:
|
30 |
"""Fetches the abstract for a given PubMed article ID."""
|
31 |
-
Entrez.email = ENTREZ_EMAIL
|
32 |
try:
|
|
|
33 |
handle = Entrez.efetch(db="pubmed", id=article_id, rettype="abstract", retmode="text")
|
34 |
abstract = handle.read()
|
35 |
handle.close()
|
36 |
return abstract
|
37 |
except Exception as e:
|
|
|
38 |
return f"Error fetching abstract for {article_id}: {e}"
|
39 |
|
40 |
def summarize_abstract(abstract: str) -> str:
|
41 |
"""Summarizes an abstract using a transformer model."""
|
42 |
-
global summarizer
|
43 |
if summarizer is None:
|
44 |
-
|
|
|
45 |
|
46 |
try:
|
47 |
summary = summarizer(abstract, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
48 |
return summary
|
49 |
except Exception as e:
|
|
|
50 |
return f"Error during summarization: {e}"
|
51 |
|
52 |
def extract_entities(text: str) -> list:
|
53 |
"""Extracts entities (simplified) using SpaCy."""
|
54 |
global nlp
|
|
|
|
|
|
|
55 |
try:
|
56 |
doc = nlp(text)
|
57 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
58 |
return entities
|
59 |
except Exception as e:
|
|
|
60 |
return [f"Error during entity extraction: {e}"]
|
61 |
|
62 |
-
|
63 |
-
# ---------------------------- Agent Function (Simplified) ----------------------------
|
64 |
|
65 |
def medai_agent(query: str) -> str:
|
66 |
"""Orchestrates the medical literature review and summarization."""
|
@@ -72,7 +93,7 @@ def medai_agent(query: str) -> str:
|
|
72 |
abstract = fetch_abstract(article_id)
|
73 |
if "Error" not in abstract:
|
74 |
summary = summarize_abstract(abstract)
|
75 |
-
entities = extract_entities(abstract)
|
76 |
results.append(f"**Article ID:** {article_id}\n\n**Summary:** {summary}\n\n**Entities:** {entities}\n\n---\n")
|
77 |
else:
|
78 |
results.append(f"Error processing article {article_id}: {abstract}\n\n---\n")
|
@@ -80,31 +101,44 @@ def medai_agent(query: str) -> str:
|
|
80 |
else:
|
81 |
return f"No articles found or error occurred: {article_ids}"
|
82 |
|
83 |
-
# ----------------------------
|
84 |
|
85 |
def setup():
|
86 |
-
"""Initializes the summarization model and
|
87 |
-
global summarizer, nlp
|
|
|
88 |
try:
|
|
|
89 |
summarizer = pipeline("summarization", model=SUMMARIZATION_MODEL, token=HUGGINGFACE_API_TOKEN)
|
|
|
|
|
90 |
nlp = spacy.load(SPACY_MODEL)
|
91 |
-
|
|
|
|
|
92 |
except Exception as e:
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
def launch_gradio():
|
96 |
"""Launches the Gradio interface."""
|
|
|
97 |
with gr.Blocks() as iface:
|
98 |
gr.Markdown("# MedAI: Medical Literature Review and Summarization")
|
99 |
-
|
100 |
query_input = gr.Textbox(lines=3, placeholder="Enter your medical query (e.g., 'new treatments for diabetes')...")
|
101 |
submit_button = gr.Button("Submit")
|
102 |
output_results = gr.Markdown()
|
103 |
|
104 |
submit_button.click(medai_agent, inputs=query_input, outputs=output_results)
|
|
|
105 |
|
106 |
-
#
|
107 |
-
|
|
|
108 |
|
109 |
iface.launch()
|
110 |
|
|
|
2 |
from Bio import Entrez
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
+
import os # For environment variables and file paths
|
6 |
|
7 |
# ---------------------------- Configuration ----------------------------
|
8 |
+
ENTREZ_EMAIL = os.environ.get("ENTREZ_EMAIL", "your_email@example.com") # Use environment variable, default fallback
|
9 |
+
HUGGINGFACE_API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN", "HUGGINGFACE_API_TOKEN") # Use environment variable, default fallback
|
10 |
+
SUMMARIZATION_MODEL = "facebook/bart-large-cnn"
|
11 |
+
SPACY_MODEL = "en_core_web_sm"
|
12 |
+
|
13 |
# ---------------------------- Global Variables ----------------------------
|
14 |
+
summarizer = None
|
15 |
+
nlp = None
|
16 |
+
initialization_status = "Initializing..." # Track initialization state
|
17 |
+
|
18 |
|
19 |
+
# ---------------------------- Helper Functions ----------------------------
|
20 |
+
|
21 |
+
def log_error(message: str):
|
22 |
+
"""Logs an error message to the console and a file (if possible)."""
|
23 |
+
print(f"ERROR: {message}")
|
24 |
+
try:
|
25 |
+
with open("error_log.txt", "a") as f:
|
26 |
+
f.write(f"{message}\n")
|
27 |
+
except:
|
28 |
+
print("Couldn't write to error log file.") #If logging fails, still print to console
|
29 |
|
30 |
# ---------------------------- Tool Functions ----------------------------
|
31 |
|
32 |
def search_pubmed(query: str) -> list:
|
33 |
"""Searches PubMed and returns a list of article IDs."""
|
|
|
34 |
try:
|
35 |
+
Entrez.email = ENTREZ_EMAIL
|
36 |
+
handle = Entrez.esearch(db="pubmed", term=query, retmax="5")
|
37 |
record = Entrez.read(handle)
|
38 |
handle.close()
|
39 |
return record["IdList"]
|
40 |
except Exception as e:
|
41 |
+
log_error(f"PubMed search error: {e}")
|
42 |
return [f"Error during PubMed search: {e}"]
|
43 |
|
44 |
def fetch_abstract(article_id: str) -> str:
|
45 |
"""Fetches the abstract for a given PubMed article ID."""
|
|
|
46 |
try:
|
47 |
+
Entrez.email = ENTREZ_EMAIL
|
48 |
handle = Entrez.efetch(db="pubmed", id=article_id, rettype="abstract", retmode="text")
|
49 |
abstract = handle.read()
|
50 |
handle.close()
|
51 |
return abstract
|
52 |
except Exception as e:
|
53 |
+
log_error(f"Error fetching abstract for {article_id}: {e}")
|
54 |
return f"Error fetching abstract for {article_id}: {e}"
|
55 |
|
56 |
def summarize_abstract(abstract: str) -> str:
|
57 |
"""Summarizes an abstract using a transformer model."""
|
58 |
+
global summarizer
|
59 |
if summarizer is None:
|
60 |
+
log_error("Summarizer not initialized.")
|
61 |
+
return "Summarizer not initialized. Check initialization status."
|
62 |
|
63 |
try:
|
64 |
summary = summarizer(abstract, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
65 |
return summary
|
66 |
except Exception as e:
|
67 |
+
log_error(f"Summarization error: {e}")
|
68 |
return f"Error during summarization: {e}"
|
69 |
|
70 |
def extract_entities(text: str) -> list:
|
71 |
"""Extracts entities (simplified) using SpaCy."""
|
72 |
global nlp
|
73 |
+
if nlp is None:
|
74 |
+
log_error("SpaCy model not initialized.")
|
75 |
+
return "SpaCy model not initialized. Check initialization status."
|
76 |
try:
|
77 |
doc = nlp(text)
|
78 |
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
79 |
return entities
|
80 |
except Exception as e:
|
81 |
+
log_error(f"Entity extraction error: {e}")
|
82 |
return [f"Error during entity extraction: {e}"]
|
83 |
|
84 |
+
# ---------------------------- Agent Function ----------------------------
|
|
|
85 |
|
86 |
def medai_agent(query: str) -> str:
|
87 |
"""Orchestrates the medical literature review and summarization."""
|
|
|
93 |
abstract = fetch_abstract(article_id)
|
94 |
if "Error" not in abstract:
|
95 |
summary = summarize_abstract(abstract)
|
96 |
+
entities = extract_entities(abstract)
|
97 |
results.append(f"**Article ID:** {article_id}\n\n**Summary:** {summary}\n\n**Entities:** {entities}\n\n---\n")
|
98 |
else:
|
99 |
results.append(f"Error processing article {article_id}: {abstract}\n\n---\n")
|
|
|
101 |
else:
|
102 |
return f"No articles found or error occurred: {article_ids}"
|
103 |
|
104 |
+
# ---------------------------- Initialization and Setup ----------------------------
|
105 |
|
106 |
def setup():
|
107 |
+
"""Initializes the summarization model and SpaCy model."""
|
108 |
+
global summarizer, nlp, initialization_status
|
109 |
+
initialization_status = "Initializing..."
|
110 |
try:
|
111 |
+
print("Initializing summarization pipeline...")
|
112 |
summarizer = pipeline("summarization", model=SUMMARIZATION_MODEL, token=HUGGINGFACE_API_TOKEN)
|
113 |
+
print("Summarization pipeline initialized.")
|
114 |
+
print("Loading SpaCy model...")
|
115 |
nlp = spacy.load(SPACY_MODEL)
|
116 |
+
print("SpaCy model loaded.")
|
117 |
+
initialization_status = "MedAI Agent initialized successfully!"
|
118 |
+
return initialization_status # Return the status message
|
119 |
except Exception as e:
|
120 |
+
initialization_status = f"Initialization error: {e}"
|
121 |
+
log_error(initialization_status)
|
122 |
+
return initialization_status # Return the error message
|
123 |
+
|
124 |
+
# ---------------------------- Gradio Interface ----------------------------
|
125 |
|
126 |
def launch_gradio():
|
127 |
"""Launches the Gradio interface."""
|
128 |
+
global initialization_status #Allows the function to modify global variable
|
129 |
with gr.Blocks() as iface:
|
130 |
gr.Markdown("# MedAI: Medical Literature Review and Summarization")
|
131 |
+
status_display = gr.Textbox(value=initialization_status, interactive=False) # Displays initialization status
|
132 |
query_input = gr.Textbox(lines=3, placeholder="Enter your medical query (e.g., 'new treatments for diabetes')...")
|
133 |
submit_button = gr.Button("Submit")
|
134 |
output_results = gr.Markdown()
|
135 |
|
136 |
submit_button.click(medai_agent, inputs=query_input, outputs=output_results)
|
137 |
+
#The run of the agent will not change.
|
138 |
|
139 |
+
#The setup is running. The value of the text display will update based on this step.
|
140 |
+
setup_result = setup()
|
141 |
+
status_display.value = setup_result #update the status display.
|
142 |
|
143 |
iface.launch()
|
144 |
|