import flwr as fl import torch from collections import OrderedDict # For the example provided. def run_federated_learning(): """ Sets up and starts a federated learning simulation. This is a highly conceptual example. Actual implementation requires: 1. A defined model architecture. 2. A training loop using PyTorch or TensorFlow. 3. Data loaders. 4. Proper handling of FL strategies. """ class FlowerClient(fl.client.NumPyClient): def __init__(self, model, trainloader, valloader): self.model = model self.trainloader = trainloader self.valloader = valloader def get_parameters(self, config): return [val.cpu().numpy() for _, val in self.model.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(self.model.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) self.model.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) # Train. print("Train the parameters here.") return parameters, 1, {} def evaluate(self, parameters, config): self.set_parameters(parameters) # Test (validate). return 1,1, {"accuracy": 1} #Flower code #The parameters needs to be added. print("Started Simulation FL code")