import flwr as fl import torch from collections import OrderedDict # For the example provided. def run_federated_learning(): """ Sets up and starts a federated learning simulation. This is a highly conceptual example. Actual implementation requires: 1. A defined model architecture. 2. A training loop using PyTorch or TensorFlow. 3. Data loaders. 4. Proper handling of FL strategies. """ return """ Federated Learning Implementation Status

This is a conceptual federated learning implementation. Actual data and the requirements are not implemented.

To implement Federated Learning in reality with all the requirements you need:
1. A defined model architecture: Check the FL Client and model defined with model parameters and model code.
2. A training loop using PyTorch or TensorFlow: Training and validation needs to be provided, also look the parameter setup and the model
3. Data loaders: Data needs to be correctly loaded into the program.
4. Proper handling of FL strategies: FL learning algorithms needs to be correctly provided. """ class FlowerClient(fl.client.NumPyClient): def __init__(self, model, trainloader, valloader): self.model = model self.trainloader = trainloader self.valloader = valloader def get_parameters(self, config): return [val.cpu().numpy() for _, val in self.model.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(self.model.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) self.model.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) # Train. print("Train the parameters here.") return parameters, 1, {} def evaluate(self, parameters, config): self.set_parameters(parameters) # Test (validate). return 1,1, {"accuracy": 1} #Flower code #The parameters needs to be added. print("Started Simulation FL code")