Spaces:
Running
Running
File size: 11,329 Bytes
f0840f2 904690b f0840f2 904690b f0840f2 904690b f0840f2 904690b c234528 904690b c234528 904690b f0840f2 a1bc85b 3c1cff1 a1bc85b f0840f2 a1bc85b f0840f2 a1bc85b f0840f2 a1bc85b c2e09d4 f0840f2 a1bc85b f0840f2 a1bc85b f0840f2 a1bc85b c2e09d4 a1bc85b c2e09d4 f0840f2 c2e09d4 a1bc85b 3c1cff1 c2e09d4 f0840f2 a1bc85b f0840f2 a1bc85b f0840f2 904690b f0840f2 a1bc85b f0840f2 3589b0d f0840f2 a1bc85b f0840f2 3589b0d f0840f2 a1bc85b f0840f2 904690b f0840f2 904690b f0840f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# workflow.py
import time
from datetime import datetime
from typing import Dict, Any, Sequence
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langgraph.graph import END, StateGraph
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from processor import EnhancedCognitiveProcessor
from config import ResearchConfig
import logging
logger = logging.getLogger(__name__)
# Define the state schema
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
class ResearchWorkflow:
"""
A multi-step research workflow that leverages Retrieval-Augmented Generation (RAG).
Supports domains including:
- Biomedical Research
- Legal Research
- Environmental and Energy Studies
- Competitive Programming and Theoretical Computer Science
- Social Sciences
This implementation normalizes the domain and uses domain-specific prompts and fallbacks.
"""
def __init__(self) -> None:
self.processor = EnhancedCognitiveProcessor()
self.workflow = StateGraph(AgentState) # Supply state schema
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
# Extended node for multi-modal enhancement
self.workflow.add_node("enhance", self.enhance_analysis)
self.workflow.add_edge("validate", "enhance")
self.workflow.add_edge("enhance", END)
def ingest_query(self, state: Dict) -> Dict:
try:
query = state["messages"][-1].content
# Normalize domain string to lower-case; default to 'biomedical research'
domain = state.get("context", {}).get("domain", "Biomedical Research").strip().lower()
new_context = {
"raw_query": query,
"domain": domain,
"refine_count": 0,
"refinement_history": []
}
logger.info(f"Query ingested. Domain: {domain}")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
logger.exception("Error during query ingestion.")
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: Dict) -> Dict:
try:
query = state["context"]["raw_query"]
# Simulate retrieval; for now, an empty list indicates no external documents found.
docs = []
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time(),
"refine_count": state["context"].get("refine_count", 0),
"refinement_history": state["context"].get("refinement_history", []),
"domain": state["context"].get("domain", "biomedical research")
}
}
except Exception as e:
logger.exception("Error during document retrieval.")
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: Dict) -> Dict:
try:
# Normalize domain and use it for prompt generation
domain = state["context"].get("domain", "biomedical research").strip().lower()
docs = state["context"].get("documents", [])
# Use retrieved documents if available; else, use raw query as fallback.
if docs:
docs_text = "\n\n".join([d.page_content for d in docs])
else:
docs_text = state["context"].get("raw_query", "")
logger.info("No documents retrieved; using dynamic synthesis (RAG mode).")
# Get domain-specific prompt; ensure fallback prompts exist for all supported domains.
domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "Consider relevant legal cases and statutory interpretations.")
# Build the final prompt with domain tag for clarity.
full_prompt = f"Domain: {state['context'].get('domain', 'Biomedical Research')}\n" \
f"{domain_prompt}\n\n" + \
ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(full_prompt)
if "error" in response:
logger.error("Backend response error during analysis.")
return self._error_state(response["error"])
logger.info("Content analysis completed using RAG approach.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during content analysis.")
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: Dict) -> Dict:
try:
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate the following analysis for correctness, clarity, and legal grounding:\n{analysis}\n\n"
"Criteria:\n"
"1. Technical and legal accuracy\n"
"2. Evidence and citation support\n"
"3. Logical consistency\n"
"4. Methodological soundness\n\n"
"Respond with 'VALID: [justification]' or 'INVALID: [justification]'."
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during output validation.")
return self._error_state(f"Validation Error: {str(e)}")
def refine_results(self, state: Dict) -> Dict:
try:
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
refinement_history = state["context"].setdefault("refinement_history", [])
current_analysis = state["messages"][-1].content
refinement_history.append(current_analysis)
difficulty_level = max(0, 3 - state["context"]["refine_count"])
domain = state["context"].get("domain", "biomedical research")
logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")
if state["context"]["refine_count"] >= 3:
meta_prompt = (
f"Domain: {domain}\n"
"You are given the following series of refinement outputs:\n" +
"\n---\n".join(refinement_history) +
"\n\nSynthesize these into a final, concise legal analysis report, highlighting key precedents and statutory interpretations. "
"Focus on improving accuracy and relevance for legal research."
)
meta_response = self.processor.process_query(meta_prompt)
logger.info("Meta-refinement completed.")
return {
"messages": [AIMessage(content=meta_response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
else:
refinement_prompt = (
f"Domain: {domain}\n"
f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
"First, identify weaknesses such as lack of legal grounding or misinterpretation of cases. "
"Then, improve the analysis with clear references to legal precedents and statutory language."
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during refinement.")
return self._error_state(f"Refinement Error: {str(e)}")
def _quality_check(self, state: Dict) -> str:
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome.")
return "valid"
content = state["messages"][-1].content
quality = "valid" if "VALID" in content else "invalid"
logger.info(f"Quality check returned: {quality}")
return quality
def _error_state(self, message: str) -> Dict:
logger.error(message)
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
def enhance_analysis(self, state: Dict) -> Dict:
try:
analysis = state["messages"][-1].content
enhanced = f"{analysis}\n\n## Multi-Modal Insights\n"
if "images" in state["context"]:
enhanced += "### Visual Evidence\n"
for img in state["context"]["images"]:
enhanced += f"\n"
if "code" in state["context"]:
enhanced += "### Code Artifacts\n```python\n"
for code in state["context"]["code"]:
enhanced += f"{code}\n"
enhanced += "```"
return {
"messages": [AIMessage(content=enhanced)],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during multi-modal enhancement.")
return self._error_state(f"Enhancement Error: {str(e)}")
|