Spaces:
Running
Running
# ------------------------------ | |
# Enhanced NeuroResearch AI System with Domain Adaptability, | |
# Refinement Counter, Dynamic Difficulty Gradient, Meta-Refinement Inspired by LADDER, | |
# Quantum Knowledge Graph & Multi-Modal Enhancements | |
# ------------------------------ | |
import logging | |
import os | |
import re | |
import hashlib | |
import json | |
import time | |
import sys | |
from datetime import datetime | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from typing import List, Dict, Any, Optional, Sequence | |
import chromadb | |
import requests | |
import streamlit as st | |
from PIL import Image | |
import torch | |
# LangChain and LangGraph imports | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langgraph.graph import END, StateGraph | |
from langgraph.prebuilt import ToolNode | |
from langgraph.graph.message import add_messages | |
from typing_extensions import TypedDict, Annotated | |
from langchain.tools.retriever import create_retriever_tool | |
# Increase Python's recursion limit (if needed) | |
sys.setrecursionlimit(1000) | |
# ------------------------------ | |
# Logging Configuration | |
# ------------------------------ | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s [%(levelname)s] %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
# ------------------------------ | |
# State Schema Definition | |
# ------------------------------ | |
class AgentState(TypedDict): | |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages] | |
context: Dict[str, Any] | |
metadata: Dict[str, Any] | |
# ------------------------------ | |
# Configuration | |
# ------------------------------ | |
class ResearchConfig: | |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY") | |
CHROMA_PATH = "chroma_db" | |
CHUNK_SIZE = 512 | |
CHUNK_OVERLAP = 64 | |
MAX_CONCURRENT_REQUESTS = 5 | |
EMBEDDING_DIMENSIONS = 1536 | |
DOCUMENT_MAP = { | |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%": | |
"CV-Transformer Hybrid Architecture", | |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing": | |
"Transformer Architecture Analysis", | |
"Latest Trends in Machine Learning Methods Using Quantum Computing": | |
"Quantum ML Frontiers" | |
} | |
ANALYSIS_TEMPLATE = ( | |
"Analyze these technical documents with scientific rigor:\n{context}\n\n" | |
"Respond with:\n" | |
"1. Key Technical Contributions (bullet points)\n" | |
"2. Novel Methodologies\n" | |
"3. Empirical Results (with metrics)\n" | |
"4. Potential Applications\n" | |
"5. Limitations & Future Directions\n\n" | |
"Format: Markdown with LaTeX mathematical notation where applicable" | |
) | |
DOMAIN_PROMPTS = { | |
"Biomedical Research": "Consider clinical trial design, patient outcomes, and recent biomedical breakthroughs.", | |
"Legal Research": "Emphasize legal precedents, case law, and nuanced statutory interpretations.", | |
"Environmental and Energy Studies": "Highlight renewable energy technologies, efficiency metrics, and policy implications.", | |
"Competitive Programming and Theoretical Computer Science": "Focus on algorithmic complexity, innovative proofs, and computational techniques.", | |
"Social Sciences": "Concentrate on economic trends, sociological data, and correlations impacting public policy." | |
} | |
ENSEMBLE_MODELS = { | |
"deepseek-chat": {"max_tokens": 2000, "temp": 0.7}, | |
"deepseek-coder": {"max_tokens": 2500, "temp": 0.5} | |
} | |
CLIP_SETTINGS = { | |
"model": "openai/clip-vit-large-patch14", | |
"image_db": "image_vectors" | |
} | |
if not ResearchConfig.DEEPSEEK_API_KEY: | |
st.error( | |
"""**Research Portal Configuration Required** | |
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/) | |
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings | |
3. Rebuild deployment""" | |
) | |
st.stop() | |
# ------------------------------ | |
# Quantum Document Processing | |
# ------------------------------ | |
class QuantumDocumentManager: | |
""" | |
Manages creation of Chroma collections from raw document texts. | |
""" | |
def __init__(self) -> None: | |
try: | |
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH) | |
logger.info("Initialized PersistentClient for Chroma.") | |
except Exception as e: | |
logger.exception("Error initializing PersistentClient; falling back to in-memory client.") | |
self.client = chromadb.Client() # Fallback to in-memory client | |
self.embeddings = OpenAIEmbeddings( | |
model="text-embedding-3-large", | |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS | |
) | |
def create_collection(self, documents: List[str], collection_name: str) -> Chroma: | |
""" | |
Splits documents into chunks and stores them as a Chroma collection. | |
""" | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=ResearchConfig.CHUNK_SIZE, | |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP, | |
separators=["\n\n", "\n", "|||"] | |
) | |
try: | |
docs = splitter.create_documents(documents) | |
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.") | |
except Exception as e: | |
logger.exception("Error during document splitting.") | |
raise e | |
return Chroma.from_documents( | |
documents=docs, | |
embedding=self.embeddings, | |
client=self.client, | |
collection_name=collection_name, | |
ids=[self._document_id(doc.page_content) for doc in docs] | |
) | |
def _document_id(self, content: str) -> str: | |
""" | |
Generates a unique document ID using SHA256 and the current timestamp. | |
""" | |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}" | |
# Initialize document collections | |
qdm = QuantumDocumentManager() | |
research_docs = qdm.create_collection([ | |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%", | |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing", | |
"Latest Trends in Machine Learning Methods Using Quantum Computing" | |
], "research") | |
development_docs = qdm.create_collection([ | |
"Project A: UI Design Completed, API Integration in Progress", | |
"Project B: Testing New Feature X, Bug Fixes Needed", | |
"Product Y: In the Performance Optimization Stage Before Release" | |
], "development") | |
# ------------------------------ | |
# Advanced Retrieval System | |
# ------------------------------ | |
class ResearchRetriever: | |
""" | |
Provides retrieval methods for different domains. | |
""" | |
def __init__(self) -> None: | |
try: | |
self.research_retriever = research_docs.as_retriever( | |
search_type="mmr", | |
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85} | |
) | |
self.development_retriever = development_docs.as_retriever( | |
search_type="similarity", | |
search_kwargs={'k': 3} | |
) | |
logger.info("Initialized retrievers for research and development domains.") | |
except Exception as e: | |
logger.exception("Error initializing retrievers.") | |
raise e | |
def retrieve(self, query: str, domain: str) -> List[Any]: | |
""" | |
Retrieves documents based on the query and domain. | |
For now, domain differentiation is minimal; however, you can extend this method to use domain-specific collections. | |
""" | |
try: | |
return self.research_retriever.invoke(query) | |
except Exception as e: | |
logger.exception(f"Retrieval error for domain '{domain}'.") | |
return [] | |
retriever = ResearchRetriever() | |
# ------------------------------ | |
# Cognitive Processing Unit | |
# ------------------------------ | |
class CognitiveProcessor: | |
""" | |
Executes API requests to the DeepSeek backend using triple redundancy | |
and consolidates results via a consensus mechanism. | |
""" | |
def __init__(self) -> None: | |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS) | |
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12] | |
def process_query(self, prompt: str) -> Dict: | |
""" | |
Processes a query by sending multiple API requests in parallel. | |
""" | |
futures = [] | |
for _ in range(3): | |
futures.append(self.executor.submit(self._execute_api_request, prompt)) | |
results = [] | |
for future in as_completed(futures): | |
try: | |
results.append(future.result()) | |
except Exception as e: | |
logger.exception("Error during API request execution.") | |
st.error(f"Processing Error: {str(e)}") | |
return self._consensus_check(results) | |
def _execute_api_request(self, prompt: str) -> Dict: | |
""" | |
Executes a single API request to the DeepSeek endpoint. | |
""" | |
headers = { | |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}", | |
"Content-Type": "application/json", | |
"X-Research-Session": self.session_id | |
} | |
payload = { | |
"model": "deepseek-chat", | |
"messages": [{ | |
"role": "user", | |
"content": f"Respond as Senior AI Researcher:\n{prompt}" | |
}], | |
"temperature": 0.7, | |
"max_tokens": 1500, | |
"top_p": 0.9 | |
} | |
try: | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=payload, | |
timeout=45 | |
) | |
response.raise_for_status() | |
logger.info("DeepSeek API request successful.") | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
logger.exception("DeepSeek API request failed.") | |
return {"error": str(e)} | |
def _consensus_check(self, results: List[Dict]) -> Dict: | |
""" | |
Consolidates multiple API responses, selecting the one with the most content. | |
""" | |
valid_results = [r for r in results if "error" not in r] | |
if not valid_results: | |
logger.error("All API requests failed.") | |
return {"error": "All API requests failed"} | |
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', ''))) | |
# ------------------------------ | |
# Enhanced Cognitive Processor with Ensemble & Knowledge Graph Integration | |
# ------------------------------ | |
class EnhancedCognitiveProcessor(CognitiveProcessor): | |
""" | |
Extended with ensemble processing and knowledge graph integration. | |
""" | |
def __init__(self) -> None: | |
super().__init__() | |
self.knowledge_graph = QuantumKnowledgeGraph() | |
self.ensemble_models = ["deepseek-chat", "deepseek-coder"] | |
def process_query(self, prompt: str) -> Dict: | |
futures = [] | |
for model in self.ensemble_models: | |
futures.append(self.executor.submit(self._execute_api_request, prompt, model)) | |
results = [] | |
for future in as_completed(futures): | |
try: | |
results.append(future.result()) | |
except Exception as e: | |
logger.error(f"Model processing error: {str(e)}") | |
best_response = self._consensus_check(results) | |
self._update_knowledge_graph(best_response) | |
return best_response | |
def _execute_api_request(self, prompt: str, model: str) -> Dict: | |
headers = { | |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}", | |
"Content-Type": "application/json", | |
"X-Research-Session": self.session_id | |
} | |
payload = { | |
"model": model, | |
"messages": [{ | |
"role": "user", | |
"content": f"Respond as Senior AI Researcher:\n{prompt}" | |
}], | |
"temperature": ResearchConfig.ENSEMBLE_MODELS[model]["temp"], | |
"max_tokens": ResearchConfig.ENSEMBLE_MODELS[model]["max_tokens"], | |
"top_p": 0.9 | |
} | |
try: | |
response = requests.post( | |
"https://api.deepseek.com/v1/chat/completions", | |
headers=headers, | |
json=payload, | |
timeout=45 | |
) | |
response.raise_for_status() | |
logger.info(f"API request successful for model {model}.") | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
logger.exception(f"API request failed for model {model}.") | |
return {"error": str(e)} | |
def _update_knowledge_graph(self, response: Dict): | |
content = response.get('choices', [{}])[0].get('message', {}).get('content', '') | |
node_id = self.knowledge_graph.create_node({"content": content}, "analysis") | |
if self.knowledge_graph.node_counter > 1: | |
self.knowledge_graph.create_relation(node_id - 1, node_id, "evolution", strength=0.8) | |
# ------------------------------ | |
# Quantum Knowledge Graph & Multi-Modal Enhancements | |
# ------------------------------ | |
from graphviz import Digraph | |
class QuantumKnowledgeGraph: | |
"""Dynamic knowledge representation system with multi-modal nodes.""" | |
def __init__(self): | |
self.nodes = {} | |
self.relations = [] | |
self.node_counter = 0 | |
def create_node(self, content: Dict, node_type: str) -> int: | |
self.node_counter += 1 | |
self.nodes[self.node_counter] = { | |
"id": self.node_counter, | |
"content": content, | |
"type": node_type, | |
"connections": [] | |
} | |
return self.node_counter | |
def create_relation(self, source: int, target: int, rel_type: str, strength: float = 1.0): | |
self.relations.append({ | |
"source": source, | |
"target": target, | |
"type": rel_type, | |
"strength": strength | |
}) | |
self.nodes[source]["connections"].append(target) | |
def visualize_graph(self, focus_node: int = None) -> str: | |
dot = Digraph(engine="neato") | |
for nid, node in self.nodes.items(): | |
label = f"{node['type']}\n{self._truncate_content(node['content'])}" | |
dot.node(str(nid), label) | |
for rel in self.relations: | |
dot.edge(str(rel["source"]), str(rel["target"]), label=rel["type"]) | |
if focus_node: | |
dot.node(str(focus_node), color="red", style="filled") | |
return dot.source | |
def _truncate_content(self, content: Dict) -> str: | |
return json.dumps(content)[:50] + "..." | |
class MultiModalRetriever: | |
"""Enhanced retrieval system with hybrid search capabilities.""" | |
def __init__(self, text_retriever, clip_model, clip_processor): | |
self.text_retriever = text_retriever | |
self.clip_model = clip_model | |
self.clip_processor = clip_processor | |
# Provide required positional arguments: name and description | |
self.code_retriever = create_retriever_tool([], "Code Retriever", "Retriever for code snippets") | |
def retrieve(self, query: str, domain: str) -> Dict[str, List]: | |
results = { | |
"text": self._retrieve_text(query), | |
"images": self._retrieve_images(query), | |
"code": self._retrieve_code(query) | |
} | |
return results | |
def _retrieve_text(self, query: str) -> List[Any]: | |
return self.text_retriever.invoke(query) | |
def _retrieve_images(self, query: str) -> List[str]: | |
inputs = self.clip_processor(text=query, return_tensors="pt") | |
with torch.no_grad(): | |
text_emb = self.clip_model.get_text_features(**inputs) | |
return ["image_result_1.png", "image_result_2.png"] | |
def _retrieve_code(self, query: str) -> List[str]: | |
return self.code_retriever.invoke(query) | |
# ------------------------------ | |
# Enhanced Research Workflow | |
# ------------------------------ | |
class ResearchWorkflow: | |
""" | |
Defines the multi-step research workflow using a state graph. | |
""" | |
def __init__(self) -> None: | |
self.processor = EnhancedCognitiveProcessor() | |
self.workflow = StateGraph(AgentState) | |
self._build_workflow() | |
self.app = self.workflow.compile() | |
def _build_workflow(self) -> None: | |
# Base workflow nodes | |
self.workflow.add_node("ingest", self.ingest_query) | |
self.workflow.add_node("retrieve", self.retrieve_documents) | |
self.workflow.add_node("analyze", self.analyze_content) | |
self.workflow.add_node("validate", self.validate_output) | |
self.workflow.add_node("refine", self.refine_results) | |
self.workflow.set_entry_point("ingest") | |
self.workflow.add_edge("ingest", "retrieve") | |
self.workflow.add_edge("retrieve", "analyze") | |
self.workflow.add_conditional_edges( | |
"analyze", | |
self._quality_check, | |
{"valid": "validate", "invalid": "refine"} | |
) | |
self.workflow.add_edge("validate", END) | |
self.workflow.add_edge("refine", "retrieve") | |
# Extended node for multi-modal enhancement | |
self.workflow.add_node("enhance", self.enhance_analysis) | |
self.workflow.add_edge("validate", "enhance") | |
self.workflow.add_edge("enhance", END) | |
def ingest_query(self, state: AgentState) -> Dict: | |
""" | |
Ingests the research query and initializes context with query, domain, refinement counter, and history. | |
""" | |
try: | |
query = state["messages"][-1].content | |
domain = state.get("domain", "Biomedical Research") | |
new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []} | |
logger.info(f"Query ingested. Domain: {domain}") | |
return { | |
"messages": [AIMessage(content="Query ingested successfully")], | |
"context": new_context, | |
"metadata": {"timestamp": datetime.now().isoformat()} | |
} | |
except Exception as e: | |
logger.exception("Error during query ingestion.") | |
return self._error_state(f"Ingestion Error: {str(e)}") | |
def retrieve_documents(self, state: AgentState) -> Dict: | |
""" | |
Retrieves research documents based on the query. | |
""" | |
try: | |
query = state["context"]["raw_query"] | |
docs = retriever.retrieve(query, state["context"].get("domain", "Biomedical Research")) | |
logger.info(f"Retrieved {len(docs)} documents for query.") | |
return { | |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")], | |
"context": { | |
"documents": docs, | |
"retrieval_time": time.time(), | |
"refine_count": state["context"].get("refine_count", 0), | |
"refinement_history": state["context"].get("refinement_history", []), | |
"domain": state["context"].get("domain", "Biomedical Research") | |
} | |
} | |
except Exception as e: | |
logger.exception("Error during document retrieval.") | |
return self._error_state(f"Retrieval Error: {str(e)}") | |
def analyze_content(self, state: AgentState) -> Dict: | |
""" | |
Analyzes the retrieved documents using the DeepSeek API. | |
Augments the prompt with domain-specific instructions. | |
""" | |
try: | |
docs = state["context"].get("documents", []) | |
docs_text = "\n\n".join([d.page_content for d in docs]) | |
domain = state["context"].get("domain", "Biomedical Research") | |
domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "") | |
full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text) | |
response = self.processor.process_query(full_prompt) | |
if "error" in response: | |
logger.error("DeepSeek response error during analysis.") | |
return self._error_state(response["error"]) | |
logger.info("Content analysis completed.") | |
return { | |
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))], | |
"context": { | |
"analysis": response, | |
"refine_count": state["context"].get("refine_count", 0), | |
"refinement_history": state["context"].get("refinement_history", []), | |
"domain": domain | |
} | |
} | |
except Exception as e: | |
logger.exception("Error during content analysis.") | |
return self._error_state(f"Analysis Error: {str(e)}") | |
def validate_output(self, state: AgentState) -> Dict: | |
""" | |
Validates the technical analysis report. | |
""" | |
try: | |
analysis = state["messages"][-1].content | |
validation_prompt = ( | |
f"Validate research analysis:\n{analysis}\n\n" | |
"Check for:\n1. Technical accuracy\n2. Citation support\n3. Logical consistency\n4. Methodological soundness\n\n" | |
"Respond with 'VALID' or 'INVALID'" | |
) | |
response = self.processor.process_query(validation_prompt) | |
logger.info("Output validation completed.") | |
return { | |
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")] | |
} | |
except Exception as e: | |
logger.exception("Error during output validation.") | |
return self._error_state(f"Validation Error: {str(e)}") | |
def refine_results(self, state: AgentState) -> Dict: | |
""" | |
Refines the analysis report if validation fails. | |
Implements a meta-refinement mechanism inspired by LADDER. | |
Tracks refinement history, uses a dynamic difficulty gradient, and if the refinement count exceeds a threshold, | |
summarizes the history into a final output. | |
""" | |
try: | |
current_count = state["context"].get("refine_count", 0) | |
state["context"]["refine_count"] = current_count + 1 | |
refinement_history = state["context"].setdefault("refinement_history", []) | |
current_analysis = state["messages"][-1].content | |
refinement_history.append(current_analysis) | |
difficulty_level = max(0, 3 - state["context"]["refine_count"]) | |
logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}") | |
if state["context"]["refine_count"] >= 3: | |
meta_prompt = ( | |
"You are given the following series of refinement outputs:\n" + | |
"\n---\n".join(refinement_history) + | |
"\n\nSummarize the above into a final, concise, and high-quality technical analysis report. Do not introduce new ideas; just synthesize the improvements." | |
) | |
meta_response = self.processor.process_query(meta_prompt) | |
logger.info("Meta-refinement completed.") | |
return { | |
"messages": [AIMessage(content=meta_response.get('choices', [{}])[0].get('message', {}).get('content', ''))], | |
"context": state["context"] | |
} | |
else: | |
refinement_prompt = ( | |
f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n" | |
"Improve the following aspects:\n1. Technical precision\n2. Empirical grounding\n3. Theoretical coherence\n\n" | |
"Use a structured difficulty gradient approach (similar to LADDER) to produce a simpler yet more accurate variant." | |
) | |
response = self.processor.process_query(refinement_prompt) | |
logger.info("Refinement completed.") | |
return { | |
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))], | |
"context": state["context"] | |
} | |
except Exception as e: | |
logger.exception("Error during refinement.") | |
return self._error_state(f"Refinement Error: {str(e)}") | |
def _quality_check(self, state: AgentState) -> str: | |
""" | |
Checks whether the analysis report is valid. | |
Forces a valid state if the refinement count exceeds a threshold. | |
""" | |
refine_count = state["context"].get("refine_count", 0) | |
if refine_count >= 3: | |
logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.") | |
return "valid" | |
content = state["messages"][-1].content | |
quality = "valid" if "VALID" in content else "invalid" | |
logger.info(f"Quality check returned: {quality}") | |
return quality | |
def _error_state(self, message: str) -> Dict: | |
""" | |
Returns a standardized error state. | |
""" | |
logger.error(message) | |
return { | |
"messages": [AIMessage(content=f"β {message}")], | |
"context": {"error": True}, | |
"metadata": {"status": "error"} | |
} | |
# ------------------------------ | |
# Enhanced Research Interface | |
# ------------------------------ | |
class ResearchInterface: | |
""" | |
Provides the Streamlit-based interface for executing the research workflow. | |
Extended with collaboration features and knowledge visualization. | |
""" | |
def __init__(self) -> None: | |
self.workflow = ResearchWorkflow() | |
self._initialize_interface() | |
def _initialize_interface(self) -> None: | |
st.set_page_config( | |
page_title="NeuroResearch AI", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
self._inject_styles() | |
self._build_sidebar() | |
self._build_main_interface() | |
def _inject_styles(self) -> None: | |
st.markdown( | |
""" | |
<style> | |
:root { | |
--primary: #2ecc71; | |
--secondary: #3498db; | |
--background: #0a0a0a; | |
--text: #ecf0f1; | |
} | |
.stApp { | |
background: var(--background); | |
color: var(--text); | |
font-family: 'Roboto', sans-serif; | |
} | |
.stTextArea textarea { | |
background: #1a1a1a !important; | |
color: var(--text) !important; | |
border: 2px solid var(--secondary); | |
border-radius: 8px; | |
padding: 1rem; | |
} | |
.stButton>button { | |
background: linear-gradient(135deg, var(--primary), var(--secondary)); | |
border: none; | |
border-radius: 8px; | |
padding: 1rem 2rem; | |
transition: all 0.3s; | |
} | |
.stButton>button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3); | |
} | |
.stExpander { | |
background: #1a1a1a; | |
border: 1px solid #2a2a2a; | |
border-radius: 8px; | |
margin: 1rem 0; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
def _build_sidebar(self) -> None: | |
with st.sidebar: | |
st.title("π Research Database") | |
st.subheader("Technical Papers") | |
for title, short in ResearchConfig.DOCUMENT_MAP.items(): | |
with st.expander(short): | |
st.markdown(f"```\n{title}\n```") | |
st.subheader("Analysis Metrics") | |
st.metric("Vector Collections", 2) | |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS) | |
with st.sidebar.expander("Collaboration Hub"): | |
st.subheader("Live Research Team") | |
st.write("π©π» Researcher A") | |
st.write("π¨π¬ Researcher B") | |
st.write("π€ AI Assistant") | |
st.subheader("Knowledge Graph") | |
if st.button("πΈ View Current Graph"): | |
self._display_knowledge_graph() | |
def _build_main_interface(self) -> None: | |
st.title("π§ NeuroResearch AI") | |
query = st.text_area( | |
"Research Query:", | |
height=200, | |
placeholder="Enter technical research question..." | |
) | |
domain = st.selectbox( | |
"Select Research Domain:", | |
options=[ | |
"Biomedical Research", | |
"Legal Research", | |
"Environmental and Energy Studies", | |
"Competitive Programming and Theoretical Computer Science", | |
"Social Sciences" | |
], | |
index=0 | |
) | |
if st.button("Execute Analysis", type="primary"): | |
self._execute_analysis(query, domain) | |
def _execute_analysis(self, query: str, domain: str) -> None: | |
try: | |
with st.spinner("Initializing Quantum Analysis..."): | |
results = self.workflow.app.stream({ | |
"messages": [HumanMessage(content=query)], | |
"context": {"domain": domain}, | |
"metadata": {} | |
}, {"recursion_limit": 100}) | |
for event in results: | |
self._render_event(event) | |
st.success("β Analysis Completed Successfully") | |
except Exception as e: | |
logger.exception("Workflow execution failed.") | |
st.error( | |
f"""**Analysis Failed** | |
{str(e)} | |
Potential issues: | |
- Complex query structure | |
- Document correlation failure | |
- Temporal processing constraints""" | |
) | |
def _render_event(self, event: Dict) -> None: | |
if 'ingest' in event: | |
with st.container(): | |
st.success("β Query Ingested") | |
elif 'retrieve' in event: | |
with st.container(): | |
docs = event['retrieve']['context'].get('documents', []) | |
st.info(f"π Retrieved {len(docs)} documents") | |
with st.expander("View Retrieved Documents", expanded=False): | |
for idx, doc in enumerate(docs, start=1): | |
st.markdown(f"**Document {idx}**") | |
st.code(doc.page_content, language='text') | |
elif 'analyze' in event: | |
with st.container(): | |
content = event['analyze']['messages'][0].content | |
with st.expander("Technical Analysis Report", expanded=True): | |
st.markdown(content) | |
elif 'validate' in event: | |
with st.container(): | |
content = event['validate']['messages'][0].content | |
if "VALID" in content: | |
st.success("β Validation Passed") | |
with st.expander("View Validated Analysis", expanded=True): | |
st.markdown(content.split("Validation:")[0]) | |
else: | |
st.warning("β οΈ Validation Issues Detected") | |
with st.expander("View Validation Details", expanded=True): | |
st.markdown(content) | |
elif 'enhance' in event: | |
with st.container(): | |
content = event['enhance']['messages'][0].content | |
with st.expander("Enhanced Multi-Modal Analysis Report", expanded=True): | |
st.markdown(content) | |
def _display_knowledge_graph(self) -> None: | |
graph = self.workflow.processor.knowledge_graph.visualize_graph() | |
st.graphviz_chart(graph) | |
# ------------------------------ | |
# Multi-Modal Retriever Initialization | |
# ------------------------------ | |
from transformers import CLIPProcessor, CLIPModel | |
clip_model = CLIPModel.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"]) | |
clip_processor = CLIPProcessor.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"]) | |
multi_retriever = MultiModalRetriever(retriever.research_retriever, clip_model, clip_processor) | |
# ------------------------------ | |
# Updated Document Processing for Multi-Modal Documents | |
# ------------------------------ | |
class QuantumDocumentManager(QuantumDocumentManager): | |
"""Extended with multi-modal document handling.""" | |
def create_image_collection(self, image_paths: List[str]): | |
embeddings = [] | |
for img_path in image_paths: | |
image = Image.open(img_path) | |
inputs = clip_processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
emb = clip_model.get_image_features(**inputs) | |
embeddings.append(emb.numpy()) | |
return Chroma.from_embeddings( | |
embeddings=embeddings, | |
documents=image_paths, | |
collection_name="neuro_images" | |
) | |
# Initialize image collection | |
qdm.create_image_collection([ | |
"data/images/quantum_computing.png", | |
"data/images/neural_arch.png" | |
]) | |
# ------------------------------ | |
# Execute the Application | |
# ------------------------------ | |
class ResearchInterfaceExtended(ResearchInterface): | |
"""Extended with domain adaptability, collaboration, and graph visualization.""" | |
def _build_main_interface(self) -> None: | |
super()._build_main_interface() | |
if __name__ == "__main__": | |
ResearchInterfaceExtended() | |