mgbam's picture
Update app.py
d4c248d verified
raw
history blame
21.2 kB
import logging
import os
import re
import hashlib
import json
import time
import sys
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Dict, Any, Optional, Sequence
import chromadb
import requests
import streamlit as st
# LangChain and LangGraph imports
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from langchain.tools.retriever import create_retriever_tool
# Increase Python's recursion limit at the very start (if needed)
sys.setrecursionlimit(10000)
# ------------------------------
# Logging Configuration
# ------------------------------
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s"
)
logger = logging.getLogger(__name__)
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
DOCUMENT_MAP = {
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
"CV-Transformer Hybrid Architecture",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
"Transformer Architecture Analysis",
"Latest Trends in Machine Learning Methods Using Quantum Computing":
"Quantum ML Frontiers"
}
ANALYSIS_TEMPLATE = (
"Analyze these technical documents with scientific rigor:\n{context}\n\n"
"Respond with:\n"
"1. Key Technical Contributions (bullet points)\n"
"2. Novel Methodologies\n"
"3. Empirical Results (with metrics)\n"
"4. Potential Applications\n"
"5. Limitations & Future Directions\n\n"
"Format: Markdown with LaTeX mathematical notation where applicable"
)
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error(
"""**Research Portal Configuration Required**
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
3. Rebuild deployment"""
)
st.stop()
# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
"""
Manages creation of Chroma collections from raw document texts.
"""
def __init__(self) -> None:
try:
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
logger.info("Initialized PersistentClient for Chroma.")
except Exception as e:
logger.error(f"Error initializing PersistentClient: {e}")
self.client = chromadb.Client() # Fallback to in-memory client
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
"""
Splits documents into chunks and stores them as a Chroma collection.
"""
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
try:
docs = splitter.create_documents(documents)
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
except Exception as e:
logger.error(f"Error splitting documents: {e}")
raise e
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
"""
Generates a unique document ID using SHA256 and the current timestamp.
"""
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize document collections
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection([
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")
development_docs = qdm.create_collection([
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
"""
Provides retrieval methods for different domains.
"""
def __init__(self) -> None:
try:
self.research_retriever = research_docs.as_retriever(
search_type="mmr",
search_kwargs={'k': 4, 'fetch_k': 20, 'lambda_mult': 0.85}
)
self.development_retriever = development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
logger.info("Initialized retrievers for research and development domains.")
except Exception as e:
logger.error(f"Error initializing retrievers: {e}")
raise e
def retrieve(self, query: str, domain: str) -> List[Any]:
"""
Retrieves documents based on the query and domain.
"""
try:
if domain == "research":
return self.research_retriever.invoke(query)
elif domain == "development":
return self.development_retriever.invoke(query)
else:
logger.warning(f"Domain '{domain}' not recognized.")
return []
except Exception as e:
logger.error(f"Retrieval error for domain '{domain}': {e}")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
"""
Executes API requests to the DeepSeek backend using triple redundancy
and consolidates results via a consensus mechanism.
"""
def __init__(self) -> None:
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
"""
Processes a query by sending multiple API requests in parallel.
"""
futures = []
for _ in range(3): # Triple redundancy for reliability
futures.append(self.executor.submit(self._execute_api_request, prompt))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.error(f"Error in API request: {e}")
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
"""
Executes a single API request to the DeepSeek endpoint.
"""
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as Senior AI Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info("DeepSeek API request successful.")
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"DeepSeek API request failed: {e}")
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
"""
Consolidates multiple API responses, selecting the one with the most content.
"""
valid_results = [r for r in results if "error" not in r]
if not valid_results:
logger.error("All API requests failed.")
return {"error": "All API requests failed"}
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Research Workflow Engine
# ------------------------------
class ResearchWorkflow:
"""
Defines the multi-step research workflow using a state graph.
"""
def __init__(self) -> None:
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
# Define nodes
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
# Set entry point and edges
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
def ingest_query(self, state: AgentState) -> Dict:
"""
Ingests the research query and initializes the refinement counter.
"""
try:
query = state["messages"][-1].content
# Initialize context with raw query and refinement counter
new_context = {"raw_query": query, "refine_count": 0}
logger.info("Query ingested.")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
"""
Retrieves research documents based on the query.
"""
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, "research")
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {"documents": docs, "retrieval_time": time.time(), "refine_count": state["context"].get("refine_count", 0)}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
"""
Analyzes the retrieved documents using the DeepSeek API.
"""
try:
docs = state["context"].get("documents", [])
docs_text = "\n\n".join([d.page_content for d in docs])
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
logger.info("Content analysis completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": {"analysis": response, "refine_count": state["context"].get("refine_count", 0)}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
"""
Validates the technical analysis report.
"""
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate research analysis:\n{analysis}\n\n"
"Check for:\n1. Technical accuracy\n2. Citation support\n3. Logical consistency\n4. Methodological soundness\n\n"
"Respond with 'VALID' or 'INVALID'"
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
def refine_results(self, state: AgentState) -> Dict:
"""
Refines the analysis report if validation fails.
Increments the refinement counter to limit infinite loops.
"""
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
logger.info(f"Refinement iteration: {state['context']['refine_count']}")
refinement_prompt = (
f"Refine this analysis:\n{state['messages'][-1].content}\n\n"
"Improve:\n1. Technical precision\n2. Empirical grounding\n3. Theoretical coherence"
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
"""
Checks whether the analysis report is valid.
Forces a valid state if the refinement count exceeds a threshold.
"""
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome to prevent infinite recursion.")
return "valid"
content = state["messages"][-1].content
quality = "valid" if "VALID" in content else "invalid"
logger.info(f"Quality check returned: {quality}")
return quality
def _error_state(self, message: str) -> Dict:
"""
Returns a standardized error state.
"""
logger.error(message)
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface (Streamlit UI)
# ------------------------------
class ResearchInterface:
"""
Provides the Streamlit-based interface for executing the research workflow.
"""
def __init__(self) -> None:
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self) -> None:
st.set_page_config(
page_title="NeuroResearch AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self) -> None:
st.markdown(
"""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""",
unsafe_allow_html=True
)
def _build_sidebar(self) -> None:
with st.sidebar:
st.title("πŸ” Research Database")
st.subheader("Technical Papers")
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
def _build_main_interface(self) -> None:
st.title("🧠 NeuroResearch AI")
query = st.text_area(
"Research Query:",
height=200,
placeholder="Enter technical research question..."
)
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str) -> None:
try:
with st.spinner("Initializing Quantum Analysis..."):
# Pass a recursion limit configuration into the graph invocation
results = self.workflow.app.stream({
"messages": [HumanMessage(content=query)],
"context": {},
"metadata": {}
}, {"recursion_limit": 100})
for event in results:
self._render_event(event)
st.success("βœ… Analysis Completed Successfully")
except Exception as e:
logger.error(f"Workflow execution failed: {e}")
st.error(
f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints"""
)
def _render_event(self, event: Dict) -> None:
if 'ingest' in event:
with st.container():
st.success("βœ… Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context'].get('documents', [])
st.info(f"πŸ“š Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for idx, doc in enumerate(docs, start=1):
st.markdown(f"**Document {idx}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Technical Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("βœ… Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
st.markdown(content.split("Validation:")[0])
else:
st.warning("⚠️ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
if __name__ == "__main__":
ResearchInterface()