mgbam's picture
Update app.py
eeb0aa2 verified
raw
history blame
17.7 kB
# ------------------------------
# Imports & Dependencies
# ------------------------------
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence, Dict, List, Optional, Any
import chromadb
import re
import os
import streamlit as st
import requests
import hashlib
import json
import time
from langchain.tools.retriever import create_retriever_tool
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
# ------------------------------
# State Schema Definition
# ------------------------------
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
context: Dict[str, Any]
metadata: Dict[str, Any]
# ------------------------------
# Configuration
# ------------------------------
class ResearchConfig:
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
CHROMA_PATH = "chroma_db"
CHUNK_SIZE = 512
CHUNK_OVERLAP = 64
MAX_CONCURRENT_REQUESTS = 5
EMBEDDING_DIMENSIONS = 1536
DOCUMENT_MAP = {
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
"CV-Transformer Hybrid Architecture",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
"Transformer Architecture Analysis",
"Latest Trends in Machine Learning Methods Using Quantum Computing":
"Quantum ML Frontiers"
}
ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
{context}
Respond with:
1. Key Technical Contributions (bullet points)
2. Novel Methodologies
3. Empirical Results (with metrics)
4. Potential Applications
5. Limitations & Future Directions
Format: Markdown with LaTeX mathematical notation where applicable
"""
# Validate API key configuration
if not ResearchConfig.DEEPSEEK_API_KEY:
st.error("""**Research Portal Configuration Required**
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
3. Rebuild deployment""")
st.stop()
# ------------------------------
# Quantum Document Processing
# ------------------------------
class QuantumDocumentManager:
def __init__(self):
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
docs = splitter.create_documents(documents)
# Log how many chunks were created
st.write(f"Created {len(docs)} chunks for collection '{collection_name}'")
return Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
# Initialize document collections
qdm = QuantumDocumentManager()
research_docs = qdm.create_collection([
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
], "research")
development_docs = qdm.create_collection([
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
], "development")
# ------------------------------
# Advanced Retrieval System
# ------------------------------
class ResearchRetriever:
def __init__(self):
self.retrievers = {
"research": research_docs.as_retriever(
search_type="mmr",
search_kwargs={
'k': 4,
'fetch_k': 20,
'lambda_mult': 0.85
}
),
"development": development_docs.as_retriever(
search_type="similarity",
search_kwargs={'k': 3}
)
}
def retrieve(self, query: str, domain: str) -> List[Any]:
try:
results = self.retrievers[domain].invoke(query)
st.write(f"[DEBUG] Retrieved {len(results)} documents for query: '{query}' in domain '{domain}'")
return results
except KeyError:
st.error(f"[ERROR] Retrieval domain '{domain}' not found.")
return []
retriever = ResearchRetriever()
# ------------------------------
# Cognitive Processing Unit
# ------------------------------
class CognitiveProcessor:
def __init__(self):
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
futures = []
for _ in range(3): # Triple redundancy for robustness
futures.append(self.executor.submit(
self._execute_api_request,
prompt
))
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
st.error(f"Processing Error: {str(e)}")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json={
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as Senior AI Researcher:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
},
timeout=45
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
valid = [r for r in results if "error" not in r]
if not valid:
return {"error": "All API requests failed"}
# Choose the result with the longest content
return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
# ------------------------------
# Research Workflow Engine
# ------------------------------
class ResearchWorkflow:
def __init__(self):
self.processor = CognitiveProcessor()
self.workflow = StateGraph(AgentState)
self._build_workflow()
def _build_workflow(self):
# Register nodes in the state graph
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
self.app = self.workflow.compile()
def ingest_query(self, state: AgentState) -> Dict:
try:
query = state["messages"][-1].content
st.write(f"[DEBUG] Ingesting query: {query}")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": {"raw_query": query},
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: AgentState) -> Dict:
try:
query = state["context"]["raw_query"]
docs = retriever.retrieve(query, "research")
# Log the retrieval result for debugging
st.write(f"[DEBUG] Retrieved {len(docs)} documents from retrieval node.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time()
}
}
except Exception as e:
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: AgentState) -> Dict:
try:
# Ensure documents are present before proceeding
if "documents" not in state["context"] or not state["context"]["documents"]:
return self._error_state("No documents retrieved; please check your query or retrieval process.")
# Concatenate all document content for analysis
docs = "\n\n".join([d.page_content for d in state["context"]["documents"] if hasattr(d, "page_content")])
st.write(f"[DEBUG] Analyzing content from {len(state['context']['documents'])} documents.")
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
response = self.processor.process_query(prompt)
if "error" in response:
return self._error_state(response["error"])
return {
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
"context": {"analysis": response}
}
except Exception as e:
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: AgentState) -> Dict:
analysis = state["messages"][-1].content
validation_prompt = f"""Validate research analysis:
{analysis}
Check for:
1. Technical accuracy
2. Citation support
3. Logical consistency
4. Methodological soundness
Respond with 'VALID' or 'INVALID'"""
response = self.processor.process_query(validation_prompt)
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
def refine_results(self, state: AgentState) -> Dict:
refinement_prompt = f"""Refine this analysis:
{state["messages"][-1].content}
Improve:
1. Technical precision
2. Empirical grounding
3. Theoretical coherence"""
response = self.processor.process_query(refinement_prompt)
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
def _quality_check(self, state: AgentState) -> str:
content = state["messages"][-1].content
# Check for the keyword "VALID" in the output; if missing, trigger refinement
return "valid" if "VALID" in content else "invalid"
def _error_state(self, message: str) -> Dict:
st.write(f"[ERROR] {message}")
return {
"messages": [AIMessage(content=f"❌ {message}")],
"context": {"error": True},
"metadata": {"status": "error"}
}
# ------------------------------
# Research Interface
# ------------------------------
class ResearchInterface:
def __init__(self):
self.workflow = ResearchWorkflow()
self._initialize_interface()
def _initialize_interface(self):
st.set_page_config(
page_title="NeuroResearch AI",
layout="wide",
initial_sidebar_state="expanded"
)
self._inject_styles()
self._build_sidebar()
self._build_main_interface()
def _inject_styles(self):
st.markdown("""
<style>
:root {
--primary: #2ecc71;
--secondary: #3498db;
--background: #0a0a0a;
--text: #ecf0f1;
}
.stApp {
background: var(--background);
color: var(--text);
font-family: 'Roboto', sans-serif;
}
.stTextArea textarea {
background: #1a1a1a !important;
color: var(--text) !important;
border: 2px solid var(--secondary);
border-radius: 8px;
padding: 1rem;
}
.stButton>button {
background: linear-gradient(135deg, var(--primary), var(--secondary));
border: none;
border-radius: 8px;
padding: 1rem 2rem;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
}
.stExpander {
background: #1a1a1a;
border: 1px solid #2a2a2a;
border-radius: 8px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
def _build_sidebar(self):
with st.sidebar:
st.title("πŸ” Research Database")
st.subheader("Technical Papers")
for title, short in ResearchConfig.DOCUMENT_MAP.items():
with st.expander(short):
st.markdown(f"```\n{title}\n```")
st.subheader("Analysis Metrics")
st.metric("Vector Collections", 2)
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
def _build_main_interface(self):
st.title("🧠 NeuroResearch AI")
query = st.text_area("Research Query:", height=200,
placeholder="Enter technical research question...")
if st.button("Execute Analysis", type="primary"):
self._execute_analysis(query)
def _execute_analysis(self, query: str):
try:
with st.spinner("Initializing Quantum Analysis..."):
results = self.workflow.app.stream(
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
)
for event in results:
self._render_event(event)
st.success("βœ… Analysis Completed Successfully")
except Exception as e:
st.error(f"""**Analysis Failed**
{str(e)}
Potential issues:
- Complex query structure
- Document correlation failure
- Temporal processing constraints""")
def _render_event(self, event: Dict):
if 'ingest' in event:
with st.container():
st.success("βœ… Query Ingested")
elif 'retrieve' in event:
with st.container():
docs = event['retrieve']['context']['documents']
st.info(f"πŸ“š Retrieved {len(docs)} documents")
with st.expander("View Retrieved Documents", expanded=False):
for i, doc in enumerate(docs, 1):
st.markdown(f"**Document {i}**")
st.code(doc.page_content, language='text')
elif 'analyze' in event:
with st.container():
content = event['analyze']['messages'][0].content
with st.expander("Technical Analysis Report", expanded=True):
st.markdown(content)
elif 'validate' in event:
with st.container():
content = event['validate']['messages'][0].content
if "VALID" in content:
st.success("βœ… Validation Passed")
with st.expander("View Validated Analysis", expanded=True):
st.markdown(content.split("Validation:")[0])
else:
st.warning("⚠️ Validation Issues Detected")
with st.expander("View Validation Details", expanded=True):
st.markdown(content)
if __name__ == "__main__":
ResearchInterface()