NeuroResearch_AI / workflow.py
mgbam's picture
Create workflow.py
f0840f2 verified
raw
history blame
10.6 kB
# workflow.py
import time
from datetime import datetime
from typing import Dict
from langchain_core.messages import AIMessage, HumanMessage
from langgraph.graph import END, StateGraph
from langgraph.graph.message import add_messages
from processor import EnhancedCognitiveProcessor
from config import ResearchConfig
import logging
logger = logging.getLogger(__name__)
class ResearchWorkflow:
"""
Defines a multi-step research workflow using a state graph.
"""
def __init__(self) -> None:
self.processor = EnhancedCognitiveProcessor()
self.workflow = StateGraph()
self._build_workflow()
self.app = self.workflow.compile()
def _build_workflow(self) -> None:
self.workflow.add_node("ingest", self.ingest_query)
self.workflow.add_node("retrieve", self.retrieve_documents)
self.workflow.add_node("analyze", self.analyze_content)
self.workflow.add_node("validate", self.validate_output)
self.workflow.add_node("refine", self.refine_results)
self.workflow.set_entry_point("ingest")
self.workflow.add_edge("ingest", "retrieve")
self.workflow.add_edge("retrieve", "analyze")
self.workflow.add_conditional_edges(
"analyze",
self._quality_check,
{"valid": "validate", "invalid": "refine"}
)
self.workflow.add_edge("validate", END)
self.workflow.add_edge("refine", "retrieve")
# Extended node for multi-modal enhancement
self.workflow.add_node("enhance", self.enhance_analysis)
self.workflow.add_edge("validate", "enhance")
self.workflow.add_edge("enhance", END)
def ingest_query(self, state: Dict) -> Dict:
try:
query = state["messages"][-1].content
# Retrieve the domain from the state's context (defaulting to Biomedical Research)
domain = state.get("context", {}).get("domain", "Biomedical Research")
new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []}
logger.info(f"Query ingested. Domain: {domain}")
return {
"messages": [AIMessage(content="Query ingested successfully")],
"context": new_context,
"metadata": {"timestamp": datetime.now().isoformat()}
}
except Exception as e:
logger.exception("Error during query ingestion.")
return self._error_state(f"Ingestion Error: {str(e)}")
def retrieve_documents(self, state: Dict) -> Dict:
try:
query = state["context"]["raw_query"]
# For demonstration, we use an empty document list.
# Replace this with actual retrieval logic as needed.
docs = []
logger.info(f"Retrieved {len(docs)} documents for query.")
return {
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
"context": {
"documents": docs,
"retrieval_time": time.time(),
"refine_count": state["context"].get("refine_count", 0),
"refinement_history": state["context"].get("refinement_history", []),
"domain": state["context"].get("domain", "Biomedical Research")
}
}
except Exception as e:
logger.exception("Error during document retrieval.")
return self._error_state(f"Retrieval Error: {str(e)}")
def analyze_content(self, state: Dict) -> Dict:
try:
domain = state["context"].get("domain", "Biomedical Research").strip().lower()
fallback_analyses = ResearchConfig.DOMAIN_FALLBACKS
if domain in fallback_analyses:
logger.info(f"Using fallback analysis for domain: {state['context'].get('domain')}")
return {
"messages": [AIMessage(content=fallback_analyses[domain].strip())],
"context": state["context"]
}
else:
docs = state["context"].get("documents", [])
docs_text = "\n\n".join([d.page_content for d in docs])
domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "")
full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
response = self.processor.process_query(full_prompt)
if "error" in response:
logger.error("Backend response error during analysis.")
return self._error_state(response["error"])
logger.info("Content analysis completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during content analysis.")
return self._error_state(f"Analysis Error: {str(e)}")
def validate_output(self, state: Dict) -> Dict:
try:
analysis = state["messages"][-1].content
validation_prompt = (
f"Validate the following research analysis:\n{analysis}\n\n"
"Check for:\n"
"1. Technical accuracy\n"
"2. Citation support (are claims backed by evidence?)\n"
"3. Logical consistency\n"
"4. Methodological soundness\n\n"
"Respond with 'VALID: [brief justification]' or 'INVALID: [brief justification]'."
)
response = self.processor.process_query(validation_prompt)
logger.info("Output validation completed.")
return {
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
}
except Exception as e:
logger.exception("Error during output validation.")
return self._error_state(f"Validation Error: {str(e)}")
def refine_results(self, state: Dict) -> Dict:
try:
current_count = state["context"].get("refine_count", 0)
state["context"]["refine_count"] = current_count + 1
refinement_history = state["context"].setdefault("refinement_history", [])
current_analysis = state["messages"][-1].content
refinement_history.append(current_analysis)
difficulty_level = max(0, 3 - state["context"]["refine_count"])
logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")
if state["context"]["refine_count"] >= 3:
meta_prompt = (
"You are given the following series of refinement outputs:\n" +
"\n---\n".join(refinement_history) +
"\n\nSynthesize the above into a final, concise, and high-quality technical analysis report. "
"Focus on the key findings and improvements made across the iterations. Do not introduce new ideas; just synthesize the improvements. Ensure the report is well-structured and easy to understand."
)
meta_response = self.processor.process_query(meta_prompt)
logger.info("Meta-refinement completed.")
return {
"messages": [AIMessage(content=meta_response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
else:
refinement_prompt = (
f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
"First, critically evaluate the analysis and identify its weaknesses, such as inaccuracies, unsupported claims, or lack of clarity. Summarize these weaknesses in a short paragraph.\n\n"
"Then, improve the following aspects:\n"
"1. Technical precision\n"
"2. Empirical grounding\n"
"3. Theoretical coherence\n\n"
"Use a structured difficulty gradient approach (similar to LADDER) to produce a simpler yet more accurate variant, addressing the weaknesses identified."
)
response = self.processor.process_query(refinement_prompt)
logger.info("Refinement completed.")
return {
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during refinement.")
return self._error_state(f"Refinement Error: {str(e)}")
def _quality_check(self, state: Dict) -> str:
refine_count = state["context"].get("refine_count", 0)
if refine_count >= 3:
logger.warning("Refinement limit reached. Forcing valid outcome.")
return "valid"
content = state["messages"][-1].content
quality = "valid" if "VALID" in content else "invalid"
logger.info(f"Quality check returned: {quality}")
return quality
def _error_state(self, message: str) -> Dict:
logger.error(message)
return {
"messages": [{"content": f"❌ {message}"}],
"context": {"error": True},
"metadata": {"status": "error"}
}
def enhance_analysis(self, state: Dict) -> Dict:
try:
analysis = state["messages"][-1].content
enhanced = f"{analysis}\n\n## Multi-Modal Insights\n"
if "images" in state["context"]:
enhanced += "### Visual Evidence\n"
for img in state["context"]["images"]:
enhanced += f"![Relevant visual]({img})\n"
if "code" in state["context"]:
enhanced += "### Code Artifacts\n```python\n"
for code in state["context"]["code"]:
enhanced += f"{code}\n"
enhanced += "```"
return {
"messages": [{"content": enhanced}],
"context": state["context"]
}
except Exception as e:
logger.exception("Error during multi-modal enhancement.")
return self._error_state(f"Enhancement Error: {str(e)}")