Spaces:
Running
Running
# document_manager.py | |
import logging | |
import hashlib | |
import time | |
from typing import List, Optional, Any | |
import chromadb | |
from langchain_openai import OpenAIEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from PIL import Image | |
import torch | |
from config import ResearchConfig | |
logger = logging.getLogger(__name__) | |
class QuantumDocumentManager: | |
""" | |
Manages creation of Chroma collections from raw document texts. | |
""" | |
def __init__(self) -> None: | |
try: | |
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH) | |
logger.info("Initialized PersistentClient for Chroma.") | |
except Exception as e: | |
logger.exception("Error initializing PersistentClient; falling back to in-memory client.") | |
self.client = chromadb.Client() | |
self.embeddings = OpenAIEmbeddings( | |
model="text-embedding-3-large", | |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS | |
) | |
def create_collection(self, documents: List[str], collection_name: str) -> Any: | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=ResearchConfig.CHUNK_SIZE, | |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP, | |
separators=["\n\n", "\n", "|||"] | |
) | |
try: | |
docs = splitter.create_documents(documents) | |
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.") | |
except Exception as e: | |
logger.exception("Error during document splitting.") | |
raise e | |
return chromadb.Chroma.from_documents( | |
documents=docs, | |
embedding=self.embeddings, | |
client=self.client, | |
collection_name=collection_name, | |
ids=[self._document_id(doc.page_content) for doc in docs] | |
) | |
def _document_id(self, content: str) -> str: | |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}" | |
class ExtendedQuantumDocumentManager(QuantumDocumentManager): | |
""" | |
Extends QuantumDocumentManager with multi-modal (image) document handling. | |
Uses dependency injection for CLIP components. | |
""" | |
def __init__(self, clip_model: Any, clip_processor: Any) -> None: | |
super().__init__() | |
self.clip_model = clip_model | |
self.clip_processor = clip_processor | |
def create_image_collection(self, image_paths: List[str]) -> Optional[Any]: | |
embeddings = [] | |
valid_images = [] | |
for img_path in image_paths: | |
try: | |
image = Image.open(img_path) | |
inputs = self.clip_processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
emb = self.clip_model.get_image_features(**inputs) | |
embeddings.append(emb.numpy()) | |
valid_images.append(img_path) | |
except FileNotFoundError: | |
logger.warning(f"Image file not found: {img_path}. Skipping.") | |
except Exception as e: | |
logger.exception(f"Error processing image {img_path}: {str(e)}") | |
if not embeddings: | |
logger.error("No valid images found for image collection.") | |
return None | |
return chromadb.Chroma.from_embeddings( | |
embeddings=embeddings, | |
documents=valid_images, | |
collection_name="neuro_images" | |
) | |