NeuroResearch_AI / document_manager.py
mgbam's picture
Create document_manager.py
fe062b2 verified
# document_manager.py
import logging
import hashlib
import time
from typing import List, Optional, Any
import chromadb
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PIL import Image
import torch
from config import ResearchConfig
logger = logging.getLogger(__name__)
class QuantumDocumentManager:
"""
Manages creation of Chroma collections from raw document texts.
"""
def __init__(self) -> None:
try:
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
logger.info("Initialized PersistentClient for Chroma.")
except Exception as e:
logger.exception("Error initializing PersistentClient; falling back to in-memory client.")
self.client = chromadb.Client()
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-large",
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
)
def create_collection(self, documents: List[str], collection_name: str) -> Any:
splitter = RecursiveCharacterTextSplitter(
chunk_size=ResearchConfig.CHUNK_SIZE,
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
separators=["\n\n", "\n", "|||"]
)
try:
docs = splitter.create_documents(documents)
logger.info(f"Created {len(docs)} document chunks for collection '{collection_name}'.")
except Exception as e:
logger.exception("Error during document splitting.")
raise e
return chromadb.Chroma.from_documents(
documents=docs,
embedding=self.embeddings,
client=self.client,
collection_name=collection_name,
ids=[self._document_id(doc.page_content) for doc in docs]
)
def _document_id(self, content: str) -> str:
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
class ExtendedQuantumDocumentManager(QuantumDocumentManager):
"""
Extends QuantumDocumentManager with multi-modal (image) document handling.
Uses dependency injection for CLIP components.
"""
def __init__(self, clip_model: Any, clip_processor: Any) -> None:
super().__init__()
self.clip_model = clip_model
self.clip_processor = clip_processor
def create_image_collection(self, image_paths: List[str]) -> Optional[Any]:
embeddings = []
valid_images = []
for img_path in image_paths:
try:
image = Image.open(img_path)
inputs = self.clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
emb = self.clip_model.get_image_features(**inputs)
embeddings.append(emb.numpy())
valid_images.append(img_path)
except FileNotFoundError:
logger.warning(f"Image file not found: {img_path}. Skipping.")
except Exception as e:
logger.exception(f"Error processing image {img_path}: {str(e)}")
if not embeddings:
logger.error("No valid images found for image collection.")
return None
return chromadb.Chroma.from_embeddings(
embeddings=embeddings,
documents=valid_images,
collection_name="neuro_images"
)