Spaces:
Running
Running
# interface.py | |
import streamlit as st | |
import logging | |
from typing import Dict | |
from langchain_core.messages import HumanMessage | |
from workflow import ResearchWorkflow | |
from config import ResearchConfig | |
from langchain_core.messages import AIMessage | |
logger = logging.getLogger(__name__) | |
class ResearchInterface: | |
""" | |
Provides the Streamlit-based interface for executing the research workflow. | |
""" | |
def __init__(self) -> None: | |
self.workflow = ResearchWorkflow() | |
self._initialize_interface() | |
def _initialize_interface(self) -> None: | |
st.set_page_config( | |
page_title="NeuroResearch AI", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
self._inject_styles() | |
self._build_sidebar() | |
self._build_main_interface() | |
def _inject_styles(self) -> None: | |
st.markdown( | |
""" | |
<style> | |
:root { | |
--primary: #2ecc71; | |
--secondary: #3498db; | |
--background: #0a0a0a; | |
--text: #ecf0f1; | |
} | |
.stApp { | |
background: var(--background); | |
color: var(--text); | |
font-family: 'Roboto', sans-serif; | |
} | |
.stTextArea textarea { | |
background: #1a1a1a !important; | |
color: var(--text) !important; | |
border: 2px solid var(--secondary); | |
border-radius: 8px; | |
padding: 1rem; | |
} | |
.stButton>button { | |
background: linear-gradient(135deg, var(--primary), var(--secondary)); | |
border: none; | |
border-radius: 8px; | |
padding: 1rem 2rem; | |
transition: all 0.3s; | |
} | |
.stButton>button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3); | |
} | |
.stExpander { | |
background: #1a1a1a; | |
border: 1px solid #2a2a2a; | |
border-radius: 8px; | |
margin: 1rem 0; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
def _build_sidebar(self) -> None: | |
with st.sidebar: | |
st.title("π Research Database") | |
st.subheader("Technical Papers") | |
for title, short in ResearchConfig.DOCUMENT_MAP.items(): | |
with st.expander(short): | |
st.markdown(f"```\n{title}\n```") | |
st.subheader("Analysis Metrics") | |
st.metric("Vector Collections", 2) | |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS) | |
with st.sidebar.expander("Collaboration Hub"): | |
st.subheader("Live Research Team") | |
st.write("π©π» Researcher A") | |
st.write("π¨π¬ Researcher B") | |
st.write("π€ AI Assistant") | |
st.subheader("Knowledge Graph") | |
if st.button("πΈ View Current Graph"): | |
self._display_knowledge_graph() | |
def _build_main_interface(self) -> None: | |
st.title("π§ NeuroResearch AI") | |
query = st.text_area("Research Query:", height=200, placeholder="Enter technical research question...") | |
domain = st.selectbox( | |
"Select Research Domain:", | |
options=[ | |
"Biomedical Research", | |
"Legal Research", | |
"Environmental and Energy Studies", | |
"Competitive Programming and Theoretical Computer Science", | |
"Social Sciences" | |
], | |
index=0 | |
) | |
if st.button("Execute Analysis", type="primary"): | |
self._execute_analysis(query, domain) | |
def _execute_analysis(self, query: str, domain: str) -> None: | |
try: | |
with st.spinner("Initializing Quantum Analysis..."): | |
results = self.workflow.app.stream( | |
{ | |
"messages": [HumanMessage(content=query)], | |
"context": {"domain": domain}, | |
"metadata": {} | |
}, | |
{"recursion_limit": 100} | |
) | |
for event in results: | |
self._render_event(event) | |
st.success("β Analysis Completed Successfully") | |
except Exception as e: | |
st.error( | |
f"""**Analysis Failed** | |
{str(e)} | |
Potential issues: | |
- Complex query structure | |
- Document correlation failure | |
- Temporal processing constraints""" | |
) | |
def _render_event(self, event: Dict) -> None: | |
if 'ingest' in event: | |
with st.container(): | |
st.success("β Query Ingested") | |
elif 'retrieve' in event: | |
with st.container(): | |
docs = event['retrieve']['context'].get('documents', []) | |
st.info(f"π Retrieved {len(docs)} documents") | |
with st.expander("View Retrieved Documents", expanded=False): | |
for idx, doc in enumerate(docs, start=1): | |
st.markdown(f"**Document {idx}**") | |
st.code(doc.page_content, language='text') | |
elif 'analyze' in event: | |
with st.container(): | |
content = event['analyze']['messages'][0].content | |
with st.expander("Technical Analysis Report", expanded=True): | |
st.markdown(content) | |
elif 'validate' in event: | |
with st.container(): | |
content = event['validate']['messages'][0].content | |
if "VALID" in content: | |
st.success("β Validation Passed") | |
with st.expander("View Validated Analysis", expanded=True): | |
st.markdown(content.split("Validation:")[0]) | |
else: | |
st.warning("β οΈ Validation Issues Detected") | |
with st.expander("View Validation Details", expanded=True): | |
st.markdown(content) | |
elif 'enhance' in event: | |
with st.container(): | |
content = event['enhance']['messages'][0].content | |
with st.expander("Enhanced Multi-Modal Analysis Report", expanded=True): | |
st.markdown(content) | |
def _display_knowledge_graph(self) -> None: | |
st.write("Knowledge Graph visualization is not implemented yet.") | |
class ResearchInterfaceExtended(ResearchInterface): | |
""" | |
Extended interface that includes domain adaptability, collaboration features, and graph visualization. | |
""" | |
def _build_main_interface(self) -> None: | |
super()._build_main_interface() | |