NeuroResearch_AI / processor.py
mgbam's picture
Create processor.py
bee0939 verified
# processor.py
import logging
import hashlib
import time
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Dict, List
import requests
from langchain_core.messages import AIMessage
from config import ResearchConfig
from knowledge_graph import QuantumKnowledgeGraph
logger = logging.getLogger(__name__)
class CognitiveProcessor:
"""
Executes API requests to the backend using triple redundancy and consolidates results via a consensus mechanism.
"""
def __init__(self) -> None:
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
def process_query(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._execute_api_request, prompt) for _ in range(3)]
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.exception("Error during API request execution.")
return self._consensus_check(results)
def _execute_api_request(self, prompt: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": "deepseek-chat",
"messages": [{
"role": "user",
"content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
}],
"temperature": 0.7,
"max_tokens": 1500,
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info("Backend API request successful.")
return response.json()
except requests.exceptions.RequestException as e:
logger.exception("Backend API request failed.")
return {"error": str(e)}
def _consensus_check(self, results: List[Dict]) -> Dict:
valid_results = [r for r in results if "error" not in r]
if not valid_results:
logger.error("All API requests failed.")
return {"error": "All API requests failed"}
# Choose the result with the longest response content as a simple consensus metric
return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
class EnhancedCognitiveProcessor(CognitiveProcessor):
"""
Extends CognitiveProcessor with ensemble processing and knowledge graph integration.
"""
def __init__(self) -> None:
super().__init__()
self.knowledge_graph = QuantumKnowledgeGraph()
self.ensemble_models = ["deepseek-chat", "deepseek-coder"]
def process_query(self, prompt: str) -> Dict:
futures = [self.executor.submit(self._execute_api_request, prompt, model) for model in self.ensemble_models]
results = []
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
logger.error(f"Model processing error: {str(e)}")
best_response = self._consensus_check(results)
self._update_knowledge_graph(best_response)
return best_response
def _execute_api_request(self, prompt: str, model: str) -> Dict:
headers = {
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
"Content-Type": "application/json",
"X-Research-Session": self.session_id
}
payload = {
"model": model,
"messages": [{
"role": "user",
"content": f"Respond as a Senior AI Researcher and Technical Writer:\n{prompt}"
}],
"temperature": ResearchConfig.ENSEMBLE_MODELS[model]["temp"],
"max_tokens": ResearchConfig.ENSEMBLE_MODELS[model]["max_tokens"],
"top_p": 0.9
}
try:
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=45
)
response.raise_for_status()
logger.info(f"API request successful for model {model}.")
return response.json()
except requests.exceptions.RequestException as e:
logger.exception(f"API request failed for model {model}.")
return {"error": str(e)}
def _update_knowledge_graph(self, response: Dict) -> None:
content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
node_id = self.knowledge_graph.create_node({"content": content}, "analysis")
if self.knowledge_graph.node_counter > 1:
self.knowledge_graph.create_relation(node_id - 1, node_id, "evolution", strength=0.8)