Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain_openai import OpenAIEmbeddings
|
2 |
from langchain_community.vectorstores import Chroma
|
3 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
4 |
-
from
|
5 |
-
from langgraph.graph import
|
6 |
-
# Define START and END manually
|
7 |
-
START = "__start__"
|
8 |
-
END = "__end__"
|
9 |
-
|
10 |
from langgraph.prebuilt import ToolNode
|
11 |
from langgraph.graph.message import add_messages
|
12 |
from typing_extensions import TypedDict, Annotated
|
@@ -17,9 +18,9 @@ import streamlit as st
|
|
17 |
import requests
|
18 |
from langchain.tools.retriever import create_retriever_tool
|
19 |
|
20 |
-
#
|
21 |
-
#
|
22 |
-
#
|
23 |
research_texts = [
|
24 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
25 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
@@ -32,41 +33,41 @@ development_texts = [
|
|
32 |
"Product Y: In the Performance Optimization Stage Before Release"
|
33 |
]
|
34 |
|
35 |
-
#
|
36 |
-
#
|
37 |
-
#
|
38 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
39 |
-
|
40 |
research_docs = splitter.create_documents(research_texts)
|
41 |
development_docs = splitter.create_documents(development_texts)
|
42 |
|
|
|
|
|
|
|
43 |
embeddings = OpenAIEmbeddings(
|
44 |
model="text-embedding-3-large",
|
45 |
-
dimensions
|
|
|
46 |
)
|
47 |
-
|
48 |
research_vectorstore = Chroma.from_documents(
|
49 |
documents=research_docs,
|
50 |
embedding=embeddings,
|
51 |
collection_name="research_collection"
|
52 |
)
|
53 |
-
|
54 |
development_vectorstore = Chroma.from_documents(
|
55 |
documents=development_docs,
|
56 |
embedding=embeddings,
|
57 |
collection_name="development_collection"
|
58 |
)
|
59 |
-
|
60 |
research_retriever = research_vectorstore.as_retriever()
|
61 |
development_retriever = development_vectorstore.as_retriever()
|
62 |
|
63 |
-
#
|
64 |
-
#
|
65 |
-
#
|
66 |
research_tool = create_retriever_tool(
|
67 |
-
research_retriever,
|
68 |
-
"research_db_tool",
|
69 |
-
"Search information from the research database."
|
70 |
)
|
71 |
|
72 |
development_tool = create_retriever_tool(
|
@@ -77,17 +78,22 @@ development_tool = create_retriever_tool(
|
|
77 |
|
78 |
tools = [research_tool, development_tool]
|
79 |
|
80 |
-
#
|
81 |
-
#
|
82 |
-
#
|
83 |
class AgentState(TypedDict):
|
84 |
-
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
85 |
|
86 |
def agent(state: AgentState):
|
87 |
print("---CALL AGENT---")
|
88 |
messages = state["messages"]
|
89 |
-
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
prompt = f"""Given this user question: "{user_message}"
|
92 |
If it's about research or academic topics, respond EXACTLY in this format:
|
93 |
SEARCH_RESEARCH: <search terms>
|
@@ -100,7 +106,7 @@ Otherwise, just answer directly.
|
|
100 |
|
101 |
headers = {
|
102 |
"Accept": "application/json",
|
103 |
-
"Authorization": "Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
104 |
"Content-Type": "application/json"
|
105 |
}
|
106 |
|
@@ -114,13 +120,15 @@ Otherwise, just answer directly.
|
|
114 |
response = requests.post(
|
115 |
"https://api.deepseek.com/v1/chat/completions",
|
116 |
headers=headers,
|
117 |
-
json=data
|
|
|
118 |
)
|
119 |
|
120 |
if response.status_code == 200:
|
121 |
response_text = response.json()['choices'][0]['message']['content']
|
122 |
print("Raw response:", response_text)
|
123 |
|
|
|
124 |
if "SEARCH_RESEARCH:" in response_text:
|
125 |
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
126 |
results = research_retriever.invoke(query)
|
@@ -136,9 +144,6 @@ Otherwise, just answer directly.
|
|
136 |
else:
|
137 |
raise Exception(f"API call failed: {response.text}")
|
138 |
|
139 |
-
# --------------------------
|
140 |
-
# Grading Function
|
141 |
-
# --------------------------
|
142 |
def simple_grade_documents(state: AgentState):
|
143 |
messages = state["messages"]
|
144 |
last_message = messages[-1]
|
@@ -151,15 +156,13 @@ def simple_grade_documents(state: AgentState):
|
|
151 |
print("---NO DOCS FOUND, TRY REWRITE---")
|
152 |
return "rewrite"
|
153 |
|
154 |
-
# --------------------------
|
155 |
-
# Generation Function
|
156 |
-
# --------------------------
|
157 |
def generate(state: AgentState):
|
158 |
print("---GENERATE FINAL ANSWER---")
|
159 |
messages = state["messages"]
|
160 |
-
question = messages[0].content if
|
161 |
last_message = messages[-1]
|
162 |
|
|
|
163 |
docs = ""
|
164 |
if "Results: [" in last_message.content:
|
165 |
results_start = last_message.content.find("Results: [")
|
@@ -168,7 +171,7 @@ def generate(state: AgentState):
|
|
168 |
|
169 |
headers = {
|
170 |
"Accept": "application/json",
|
171 |
-
"Authorization": "Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
172 |
"Content-Type": "application/json"
|
173 |
}
|
174 |
|
@@ -180,7 +183,10 @@ Focus on extracting and synthesizing the key findings from the research papers.
|
|
180 |
|
181 |
data = {
|
182 |
"model": "deepseek-chat",
|
183 |
-
"messages": [{
|
|
|
|
|
|
|
184 |
"temperature": 0.7,
|
185 |
"max_tokens": 1024
|
186 |
}
|
@@ -189,7 +195,8 @@ Focus on extracting and synthesizing the key findings from the research papers.
|
|
189 |
response = requests.post(
|
190 |
"https://api.deepseek.com/v1/chat/completions",
|
191 |
headers=headers,
|
192 |
-
json=data
|
|
|
193 |
)
|
194 |
|
195 |
if response.status_code == 200:
|
@@ -199,9 +206,6 @@ Focus on extracting and synthesizing the key findings from the research papers.
|
|
199 |
else:
|
200 |
raise Exception(f"API call failed: {response.text}")
|
201 |
|
202 |
-
# --------------------------
|
203 |
-
# Rewrite Function
|
204 |
-
# --------------------------
|
205 |
def rewrite(state: AgentState):
|
206 |
print("---REWRITE QUESTION---")
|
207 |
messages = state["messages"]
|
@@ -209,23 +213,31 @@ def rewrite(state: AgentState):
|
|
209 |
|
210 |
headers = {
|
211 |
"Accept": "application/json",
|
212 |
-
"Authorization": "Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
213 |
"Content-Type": "application/json"
|
214 |
}
|
215 |
|
216 |
data = {
|
217 |
"model": "deepseek-chat",
|
218 |
-
"messages": [{
|
|
|
|
|
|
|
219 |
"temperature": 0.7,
|
220 |
"max_tokens": 1024
|
221 |
}
|
222 |
|
|
|
223 |
response = requests.post(
|
224 |
"https://api.deepseek.com/v1/chat/completions",
|
225 |
headers=headers,
|
226 |
-
json=data
|
|
|
227 |
)
|
228 |
|
|
|
|
|
|
|
229 |
if response.status_code == 200:
|
230 |
response_text = response.json()['choices'][0]['message']['content']
|
231 |
print("Rewritten question:", response_text)
|
@@ -233,9 +245,6 @@ def rewrite(state: AgentState):
|
|
233 |
else:
|
234 |
raise Exception(f"API call failed: {response.text}")
|
235 |
|
236 |
-
# --------------------------
|
237 |
-
# Tools Decision Function
|
238 |
-
# --------------------------
|
239 |
tools_pattern = re.compile(r"Action: .*")
|
240 |
|
241 |
def custom_tools_condition(state: AgentState):
|
@@ -244,11 +253,15 @@ def custom_tools_condition(state: AgentState):
|
|
244 |
content = last_message.content
|
245 |
|
246 |
print("Checking tools condition:", content)
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
252 |
workflow = StateGraph(AgentState)
|
253 |
|
254 |
workflow.add_node("agent", agent)
|
@@ -262,7 +275,10 @@ workflow.add_edge(START, "agent")
|
|
262 |
workflow.add_conditional_edges(
|
263 |
"agent",
|
264 |
custom_tools_condition,
|
265 |
-
{
|
|
|
|
|
|
|
266 |
)
|
267 |
|
268 |
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
@@ -271,18 +287,16 @@ workflow.add_edge("rewrite", "agent")
|
|
271 |
|
272 |
app = workflow.compile()
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
# --------------------------
|
277 |
-
def process_question(user_question):
|
278 |
events = []
|
279 |
-
for event in app.stream({"messages": [("user", user_question)]}):
|
280 |
events.append(event)
|
281 |
return events
|
282 |
|
283 |
-
#
|
284 |
-
# Streamlit
|
285 |
-
#
|
286 |
def main():
|
287 |
st.set_page_config(
|
288 |
page_title="AI Research & Development Assistant",
|
@@ -290,21 +304,40 @@ def main():
|
|
290 |
initial_sidebar_state="expanded"
|
291 |
)
|
292 |
|
|
|
293 |
st.markdown("""
|
294 |
<style>
|
295 |
-
.stApp {
|
296 |
-
|
297 |
-
|
298 |
-
.
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
</style>
|
301 |
""", unsafe_allow_html=True)
|
302 |
|
|
|
303 |
with st.sidebar:
|
304 |
st.header("π Available Data")
|
|
|
305 |
st.subheader("Research Database")
|
306 |
for text in research_texts:
|
307 |
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
|
|
308 |
st.subheader("Development Database")
|
309 |
for text in development_texts:
|
310 |
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
@@ -312,15 +345,16 @@ def main():
|
|
312 |
st.title("π€ AI Research & Development Assistant")
|
313 |
st.markdown("---")
|
314 |
|
315 |
-
|
316 |
-
|
317 |
|
318 |
col1, col2 = st.columns([1, 2])
|
319 |
with col1:
|
320 |
if st.button("π Get Answer", use_container_width=True):
|
321 |
if query:
|
322 |
with st.spinner('Processing your question...'):
|
323 |
-
events = process_question(query)
|
|
|
324 |
for event in events:
|
325 |
if 'agent' in event:
|
326 |
with st.expander("π Processing Step", expanded=True):
|
|
|
1 |
+
# pip install -r requirements.txt
|
2 |
+
|
3 |
+
# ------------------------------
|
4 |
+
# Imports & Dependencies
|
5 |
+
# ------------------------------
|
6 |
from langchain_openai import OpenAIEmbeddings
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langgraph.graph import END, StateGraph, START
|
|
|
|
|
|
|
|
|
11 |
from langgraph.prebuilt import ToolNode
|
12 |
from langgraph.graph.message import add_messages
|
13 |
from typing_extensions import TypedDict, Annotated
|
|
|
18 |
import requests
|
19 |
from langchain.tools.retriever import create_retriever_tool
|
20 |
|
21 |
+
# ------------------------------
|
22 |
+
# Dummy Data: Research & Development Texts
|
23 |
+
# ------------------------------
|
24 |
research_texts = [
|
25 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
26 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
|
|
33 |
"Product Y: In the Performance Optimization Stage Before Release"
|
34 |
]
|
35 |
|
36 |
+
# ------------------------------
|
37 |
+
# Text Splitting & Document Creation
|
38 |
+
# ------------------------------
|
39 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
|
|
40 |
research_docs = splitter.create_documents(research_texts)
|
41 |
development_docs = splitter.create_documents(development_texts)
|
42 |
|
43 |
+
# ------------------------------
|
44 |
+
# Creating Vector Stores with Embeddings
|
45 |
+
# ------------------------------
|
46 |
embeddings = OpenAIEmbeddings(
|
47 |
model="text-embedding-3-large",
|
48 |
+
# You can uncomment and set dimensions if needed:
|
49 |
+
# dimensions=1024
|
50 |
)
|
|
|
51 |
research_vectorstore = Chroma.from_documents(
|
52 |
documents=research_docs,
|
53 |
embedding=embeddings,
|
54 |
collection_name="research_collection"
|
55 |
)
|
|
|
56 |
development_vectorstore = Chroma.from_documents(
|
57 |
documents=development_docs,
|
58 |
embedding=embeddings,
|
59 |
collection_name="development_collection"
|
60 |
)
|
|
|
61 |
research_retriever = research_vectorstore.as_retriever()
|
62 |
development_retriever = development_vectorstore.as_retriever()
|
63 |
|
64 |
+
# ------------------------------
|
65 |
+
# Creating Retriever Tools
|
66 |
+
# ------------------------------
|
67 |
research_tool = create_retriever_tool(
|
68 |
+
research_retriever, # Retriever object
|
69 |
+
"research_db_tool", # Name of the tool
|
70 |
+
"Search information from the research database." # Tool description
|
71 |
)
|
72 |
|
73 |
development_tool = create_retriever_tool(
|
|
|
78 |
|
79 |
tools = [research_tool, development_tool]
|
80 |
|
81 |
+
# ------------------------------
|
82 |
+
# Agent Function & Workflow Functions
|
83 |
+
# ------------------------------
|
84 |
class AgentState(TypedDict):
|
85 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
86 |
|
87 |
def agent(state: AgentState):
|
88 |
print("---CALL AGENT---")
|
89 |
messages = state["messages"]
|
|
|
90 |
|
91 |
+
if isinstance(messages[0], tuple):
|
92 |
+
user_message = messages[0][1]
|
93 |
+
else:
|
94 |
+
user_message = messages[0].content
|
95 |
+
|
96 |
+
# Structure prompt for consistent text output
|
97 |
prompt = f"""Given this user question: "{user_message}"
|
98 |
If it's about research or academic topics, respond EXACTLY in this format:
|
99 |
SEARCH_RESEARCH: <search terms>
|
|
|
106 |
|
107 |
headers = {
|
108 |
"Accept": "application/json",
|
109 |
+
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
110 |
"Content-Type": "application/json"
|
111 |
}
|
112 |
|
|
|
120 |
response = requests.post(
|
121 |
"https://api.deepseek.com/v1/chat/completions",
|
122 |
headers=headers,
|
123 |
+
json=data,
|
124 |
+
verify=False
|
125 |
)
|
126 |
|
127 |
if response.status_code == 200:
|
128 |
response_text = response.json()['choices'][0]['message']['content']
|
129 |
print("Raw response:", response_text)
|
130 |
|
131 |
+
# Format the response into expected tool format
|
132 |
if "SEARCH_RESEARCH:" in response_text:
|
133 |
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
134 |
results = research_retriever.invoke(query)
|
|
|
144 |
else:
|
145 |
raise Exception(f"API call failed: {response.text}")
|
146 |
|
|
|
|
|
|
|
147 |
def simple_grade_documents(state: AgentState):
|
148 |
messages = state["messages"]
|
149 |
last_message = messages[-1]
|
|
|
156 |
print("---NO DOCS FOUND, TRY REWRITE---")
|
157 |
return "rewrite"
|
158 |
|
|
|
|
|
|
|
159 |
def generate(state: AgentState):
|
160 |
print("---GENERATE FINAL ANSWER---")
|
161 |
messages = state["messages"]
|
162 |
+
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
|
163 |
last_message = messages[-1]
|
164 |
|
165 |
+
# Extract the document content from the results
|
166 |
docs = ""
|
167 |
if "Results: [" in last_message.content:
|
168 |
results_start = last_message.content.find("Results: [")
|
|
|
171 |
|
172 |
headers = {
|
173 |
"Accept": "application/json",
|
174 |
+
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
175 |
"Content-Type": "application/json"
|
176 |
}
|
177 |
|
|
|
183 |
|
184 |
data = {
|
185 |
"model": "deepseek-chat",
|
186 |
+
"messages": [{
|
187 |
+
"role": "user",
|
188 |
+
"content": prompt
|
189 |
+
}],
|
190 |
"temperature": 0.7,
|
191 |
"max_tokens": 1024
|
192 |
}
|
|
|
195 |
response = requests.post(
|
196 |
"https://api.deepseek.com/v1/chat/completions",
|
197 |
headers=headers,
|
198 |
+
json=data,
|
199 |
+
verify=False
|
200 |
)
|
201 |
|
202 |
if response.status_code == 200:
|
|
|
206 |
else:
|
207 |
raise Exception(f"API call failed: {response.text}")
|
208 |
|
|
|
|
|
|
|
209 |
def rewrite(state: AgentState):
|
210 |
print("---REWRITE QUESTION---")
|
211 |
messages = state["messages"]
|
|
|
213 |
|
214 |
headers = {
|
215 |
"Accept": "application/json",
|
216 |
+
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
|
217 |
"Content-Type": "application/json"
|
218 |
}
|
219 |
|
220 |
data = {
|
221 |
"model": "deepseek-chat",
|
222 |
+
"messages": [{
|
223 |
+
"role": "user",
|
224 |
+
"content": f"Rewrite this question to be more specific and clearer: {original_question}"
|
225 |
+
}],
|
226 |
"temperature": 0.7,
|
227 |
"max_tokens": 1024
|
228 |
}
|
229 |
|
230 |
+
print("Sending rewrite request...")
|
231 |
response = requests.post(
|
232 |
"https://api.deepseek.com/v1/chat/completions",
|
233 |
headers=headers,
|
234 |
+
json=data,
|
235 |
+
verify=False
|
236 |
)
|
237 |
|
238 |
+
print("Status Code:", response.status_code)
|
239 |
+
print("Response:", response.text)
|
240 |
+
|
241 |
if response.status_code == 200:
|
242 |
response_text = response.json()['choices'][0]['message']['content']
|
243 |
print("Rewritten question:", response_text)
|
|
|
245 |
else:
|
246 |
raise Exception(f"API call failed: {response.text}")
|
247 |
|
|
|
|
|
|
|
248 |
tools_pattern = re.compile(r"Action: .*")
|
249 |
|
250 |
def custom_tools_condition(state: AgentState):
|
|
|
253 |
content = last_message.content
|
254 |
|
255 |
print("Checking tools condition:", content)
|
256 |
+
if tools_pattern.match(content):
|
257 |
+
print("Moving to retrieve...")
|
258 |
+
return "tools"
|
259 |
+
print("Moving to END...")
|
260 |
+
return END
|
261 |
+
|
262 |
+
# ------------------------------
|
263 |
+
# Workflow Configuration using LangGraph
|
264 |
+
# ------------------------------
|
265 |
workflow = StateGraph(AgentState)
|
266 |
|
267 |
workflow.add_node("agent", agent)
|
|
|
275 |
workflow.add_conditional_edges(
|
276 |
"agent",
|
277 |
custom_tools_condition,
|
278 |
+
{
|
279 |
+
"tools": "retrieve",
|
280 |
+
END: END
|
281 |
+
}
|
282 |
)
|
283 |
|
284 |
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
|
|
287 |
|
288 |
app = workflow.compile()
|
289 |
|
290 |
+
def process_question(user_question, app, config):
|
291 |
+
"""Process user question through the workflow"""
|
|
|
|
|
292 |
events = []
|
293 |
+
for event in app.stream({"messages": [("user", user_question)]}, config):
|
294 |
events.append(event)
|
295 |
return events
|
296 |
|
297 |
+
# ------------------------------
|
298 |
+
# Streamlit App UI
|
299 |
+
# ------------------------------
|
300 |
def main():
|
301 |
st.set_page_config(
|
302 |
page_title="AI Research & Development Assistant",
|
|
|
304 |
initial_sidebar_state="expanded"
|
305 |
)
|
306 |
|
307 |
+
# Custom CSS for styling
|
308 |
st.markdown("""
|
309 |
<style>
|
310 |
+
.stApp {
|
311 |
+
background-color: #f8f9fa;
|
312 |
+
}
|
313 |
+
.stButton > button {
|
314 |
+
width: 100%;
|
315 |
+
margin-top: 20px;
|
316 |
+
}
|
317 |
+
.data-box {
|
318 |
+
padding: 20px;
|
319 |
+
border-radius: 10px;
|
320 |
+
margin: 10px 0;
|
321 |
+
}
|
322 |
+
.research-box {
|
323 |
+
background-color: #e3f2fd;
|
324 |
+
border-left: 5px solid #1976d2;
|
325 |
+
}
|
326 |
+
.dev-box {
|
327 |
+
background-color: #e8f5e9;
|
328 |
+
border-left: 5px solid #43a047;
|
329 |
+
}
|
330 |
</style>
|
331 |
""", unsafe_allow_html=True)
|
332 |
|
333 |
+
# Sidebar with available data
|
334 |
with st.sidebar:
|
335 |
st.header("π Available Data")
|
336 |
+
|
337 |
st.subheader("Research Database")
|
338 |
for text in research_texts:
|
339 |
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
340 |
+
|
341 |
st.subheader("Development Database")
|
342 |
for text in development_texts:
|
343 |
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
|
|
345 |
st.title("π€ AI Research & Development Assistant")
|
346 |
st.markdown("---")
|
347 |
|
348 |
+
# Query input box
|
349 |
+
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
350 |
|
351 |
col1, col2 = st.columns([1, 2])
|
352 |
with col1:
|
353 |
if st.button("π Get Answer", use_container_width=True):
|
354 |
if query:
|
355 |
with st.spinner('Processing your question...'):
|
356 |
+
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
|
357 |
+
|
358 |
for event in events:
|
359 |
if 'agent' in event:
|
360 |
with st.expander("π Processing Step", expanded=True):
|