Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,300 +1,233 @@
|
|
1 |
-
#
|
2 |
-
#
|
3 |
-
#
|
4 |
-
# This app leverages LangGraph, DeepSeek-R1 via text-based function calling, and Agentic RAG.
|
5 |
-
# API keys are securely loaded via environment variables.
|
6 |
-
#
|
7 |
-
# To deploy:
|
8 |
-
# 1. Add your API key to Hugging Face Space secrets with the key DEEP_SEEK_API.
|
9 |
-
# 2. Ensure your requirements.txt is properly configured.
|
10 |
-
# 3. Run the app with Streamlit.
|
11 |
|
12 |
import os
|
13 |
-
import
|
14 |
-
import logging
|
15 |
-
import streamlit as st
|
16 |
import requests
|
17 |
-
|
18 |
-
from
|
19 |
-
|
20 |
-
# Updated imports for LangChain
|
21 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
22 |
-
from langchain.vectorstores import Chroma
|
23 |
-
from langchain.schema import HumanMessage, AIMessage, ToolMessage
|
24 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
25 |
-
from langchain.tools.retriever import create_retriever_tool
|
26 |
-
|
27 |
-
# Imports for LangGraph remain the same
|
28 |
from langgraph.graph import END, StateGraph, START
|
29 |
from langgraph.prebuilt import ToolNode
|
30 |
from langgraph.graph.message import add_messages
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
research_texts = [
|
38 |
-
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
39 |
-
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
40 |
-
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
41 |
]
|
42 |
|
43 |
-
|
44 |
-
"
|
45 |
-
"
|
46 |
-
"
|
47 |
]
|
48 |
|
49 |
-
#
|
50 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
embeddings
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
"
|
78 |
-
"Search
|
79 |
)
|
80 |
-
tools = [
|
81 |
|
82 |
-
#
|
83 |
class AgentState(TypedDict):
|
84 |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
85 |
|
|
|
86 |
def agent(state: AgentState):
|
87 |
-
|
88 |
messages = state["messages"]
|
89 |
-
user_message = messages[0]
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
Otherwise, just answer directly.
|
99 |
-
"""
|
100 |
-
headers = {
|
101 |
-
"Accept": "application/json",
|
102 |
-
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
103 |
-
"Content-Type": "application/json"
|
104 |
-
}
|
105 |
-
data = {
|
106 |
-
"model": "deepseek-chat",
|
107 |
-
"messages": [{"role": "user", "content": prompt}],
|
108 |
-
"temperature": 0.7,
|
109 |
-
"max_tokens": 1024
|
110 |
-
}
|
111 |
-
response = requests.post(
|
112 |
-
"https://api.deepseek.com/v1/chat/completions",
|
113 |
-
headers=headers,
|
114 |
-
json=data,
|
115 |
-
verify=False
|
116 |
-
)
|
117 |
-
if response.status_code == 200:
|
118 |
-
response_text = response.json()['choices'][0]['message']['content']
|
119 |
-
logger.info(f"DeepSeek response: {response_text}")
|
120 |
-
if "SEARCH_RESEARCH:" in response_text:
|
121 |
-
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
122 |
-
results = research_retriever.invoke(query)
|
123 |
-
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
124 |
-
elif "SEARCH_DEV:" in response_text:
|
125 |
-
query = response_text.split("SEARCH_DEV:")[1].strip()
|
126 |
-
results = development_retriever.invoke(query)
|
127 |
-
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
128 |
-
else:
|
129 |
-
return {"messages": [AIMessage(content=response_text)]}
|
130 |
else:
|
131 |
-
|
132 |
-
logger.error(error_msg)
|
133 |
-
raise Exception(error_msg)
|
134 |
|
|
|
135 |
def simple_grade_documents(state: AgentState):
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
return "generate"
|
140 |
else:
|
|
|
141 |
return "rewrite"
|
142 |
|
|
|
143 |
def generate(state: AgentState):
|
144 |
-
|
145 |
messages = state["messages"]
|
146 |
-
question = messages[0].content
|
147 |
last_message = messages[-1]
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
}
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
""
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
"temperature": 0.7,
|
165 |
-
"max_tokens": 1024
|
166 |
-
}
|
167 |
-
response = requests.post(
|
168 |
-
"https://api.deepseek.com/v1/chat/completions",
|
169 |
-
headers=headers,
|
170 |
-
json=data,
|
171 |
-
verify=False
|
172 |
-
)
|
173 |
-
if response.status_code == 200:
|
174 |
-
response_text = response.json()['choices'][0]['message']['content']
|
175 |
-
return {"messages": [AIMessage(content=response_text)]}
|
176 |
-
else:
|
177 |
-
error_msg = f"DeepSeek API generate call failed: {response.text}"
|
178 |
-
logger.error(error_msg)
|
179 |
-
raise Exception(error_msg)
|
180 |
-
|
181 |
def rewrite(state: AgentState):
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
}
|
189 |
-
data = {
|
190 |
-
"model": "deepseek-chat",
|
191 |
-
"messages": [{"role": "user", "content": f"Rewrite this question to be more specific and clearer: {original_question}"}],
|
192 |
-
"temperature": 0.7,
|
193 |
-
"max_tokens": 1024
|
194 |
-
}
|
195 |
-
response = requests.post(
|
196 |
-
"https://api.deepseek.com/v1/chat/completions",
|
197 |
-
headers=headers,
|
198 |
-
json=data,
|
199 |
-
verify=False
|
200 |
-
)
|
201 |
-
if response.status_code == 200:
|
202 |
-
response_text = response.json()['choices'][0]['message']['content']
|
203 |
-
return {"messages": [AIMessage(content=response_text)]}
|
204 |
-
else:
|
205 |
-
error_msg = f"DeepSeek API rewrite call failed: {response.text}"
|
206 |
-
logger.error(error_msg)
|
207 |
-
raise Exception(error_msg)
|
208 |
|
209 |
-
|
210 |
def custom_tools_condition(state: AgentState):
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
213 |
return "tools"
|
214 |
return END
|
215 |
|
216 |
-
#
|
217 |
workflow = StateGraph(AgentState)
|
218 |
workflow.add_node("agent", agent)
|
219 |
retrieve_node = ToolNode(tools)
|
220 |
workflow.add_node("retrieve", retrieve_node)
|
221 |
workflow.add_node("rewrite", rewrite)
|
222 |
workflow.add_node("generate", generate)
|
|
|
|
|
223 |
workflow.add_edge(START, "agent")
|
224 |
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
|
225 |
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
226 |
workflow.add_edge("generate", END)
|
227 |
workflow.add_edge("rewrite", "agent")
|
228 |
-
|
229 |
|
230 |
-
|
|
|
231 |
events = []
|
232 |
for event in app.stream({"messages": [("user", user_question)]}, config):
|
233 |
events.append(event)
|
234 |
return events
|
235 |
|
236 |
-
#
|
237 |
def main():
|
238 |
-
st.set_page_config(
|
239 |
-
|
240 |
-
""
|
241 |
-
|
242 |
-
.stApp { background-color: #f8f9fa; }
|
243 |
-
.stButton > button { width: 100%; margin-top: 20px; }
|
244 |
-
.data-box { padding: 20px; border-radius: 10px; margin: 10px 0; }
|
245 |
-
.research-box { background-color: #e3f2fd; border-left: 5px solid #1976d2; }
|
246 |
-
.dev-box { background-color: #e8f5e9; border-left: 5px solid #43a047; }
|
247 |
-
</style>
|
248 |
-
""", unsafe_allow_html=True
|
249 |
)
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
st.subheader("Research Database")
|
255 |
-
for text in research_texts:
|
256 |
-
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
257 |
-
st.subheader("Development Database")
|
258 |
-
for text in development_texts:
|
259 |
-
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
260 |
-
|
261 |
-
st.title("🤖 Advanced AI R&D Assistant")
|
262 |
-
st.markdown("---")
|
263 |
-
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
264 |
-
|
265 |
col1, col2 = st.columns([1, 2])
|
266 |
with col1:
|
267 |
-
if st.button("🔍 Get
|
268 |
if query:
|
269 |
-
with st.spinner(
|
270 |
-
events = process_question(query,
|
271 |
for event in events:
|
272 |
if 'agent' in event:
|
273 |
-
with st.expander("
|
274 |
content = event['agent']['messages'][0].content
|
275 |
-
|
276 |
-
st.markdown("### 📑 Retrieved Documents:")
|
277 |
-
docs = content[content.find("Results:"):]
|
278 |
-
st.info(docs)
|
279 |
elif 'generate' in event:
|
280 |
-
st.markdown("###
|
281 |
st.success(event['generate']['messages'][0].content)
|
|
|
|
|
|
|
282 |
else:
|
283 |
-
st.warning("⚠️ Please enter a
|
284 |
with col2:
|
285 |
-
st.markdown(
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
- What is the status of Project A?
|
295 |
-
- What are the current trends in machine learning?
|
296 |
-
"""
|
297 |
-
)
|
298 |
-
|
299 |
if __name__ == "__main__":
|
300 |
main()
|
|
|
1 |
+
# Drug Repurposing Advisor: A Multi-Agent Workflow Example
|
2 |
+
# This example uses dummy data for demonstration.
|
3 |
+
# In a production system, replace the dummy data with real pharmaceutical databases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import os
|
6 |
+
import json
|
|
|
|
|
7 |
import requests
|
8 |
+
import streamlit as st
|
9 |
+
from typing import List, Union, Tuple
|
10 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
|
|
|
|
|
|
|
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
12 |
from langgraph.graph import END, StateGraph, START
|
13 |
from langgraph.prebuilt import ToolNode
|
14 |
from langgraph.graph.message import add_messages
|
15 |
+
from typing_extensions import TypedDict, Annotated
|
16 |
+
from typing import Sequence
|
17 |
|
18 |
+
# Dummy data for drug mechanism research and clinical trial outcomes
|
19 |
+
drug_mechanism_texts = [
|
20 |
+
"Drug A: Inhibits enzyme X and modulates receptor Y; potential anti-inflammatory effects.",
|
21 |
+
"Drug B: Blocks ion channel Z; has been shown to reduce oxidative stress in preclinical models.",
|
22 |
+
"Drug C: Activates nuclear receptor W; exhibits neuroprotective properties."
|
|
|
|
|
|
|
|
|
23 |
]
|
24 |
|
25 |
+
clinical_trials_texts = [
|
26 |
+
"Trial 1: Drug A repurposed for rheumatoid arthritis showed a 30% improvement in joint function.",
|
27 |
+
"Trial 2: Drug B evaluated in a pilot study for neurodegenerative disorders demonstrated a reduction in symptom severity.",
|
28 |
+
"Trial 3: Drug C tested in a phase II trial for multiple sclerosis reported significant reduction in relapse rates."
|
29 |
]
|
30 |
|
31 |
+
# Text splitting settings
|
32 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
33 |
+
mechanism_docs = splitter.create_documents(drug_mechanism_texts)
|
34 |
+
clinical_docs = splitter.create_documents(clinical_trials_texts)
|
35 |
+
|
36 |
+
# Here you would typically create vector embeddings and vectorstores (e.g., using ChromaDB)
|
37 |
+
# For demonstration, we define simple retriever functions that return dummy results.
|
38 |
+
def mechanism_retriever(query: str) -> str:
|
39 |
+
# Dummy search: return first document that mentions a keyword from the query
|
40 |
+
for doc in drug_mechanism_texts:
|
41 |
+
if any(word.lower() in doc.lower() for word in query.split()):
|
42 |
+
return f"[Mechanism Doc]: {doc}"
|
43 |
+
return "No relevant mechanism data found."
|
44 |
+
|
45 |
+
def clinical_retriever(query: str) -> str:
|
46 |
+
for doc in clinical_trials_texts:
|
47 |
+
if any(word.lower() in doc.lower() for word in query.split()):
|
48 |
+
return f"[Clinical Trial Doc]: {doc}"
|
49 |
+
return "No relevant clinical trial data found."
|
50 |
+
|
51 |
+
# Define tools using a simple wrapper function
|
52 |
+
def create_retriever_tool(retriever_func, tool_name: str, description: str):
|
53 |
+
def tool(query: str):
|
54 |
+
return retriever_func(query)
|
55 |
+
# Mimic a tool message (in a real system, you would wrap this in a ToolMessage object)
|
56 |
+
tool.__name__ = tool_name
|
57 |
+
tool.description = description
|
58 |
+
return tool
|
59 |
+
|
60 |
+
mechanism_tool = create_retriever_tool(
|
61 |
+
mechanism_retriever,
|
62 |
+
"mechanism_db_tool",
|
63 |
+
"Search drug mechanism data for repurposing insights."
|
64 |
)
|
65 |
+
clinical_tool = create_retriever_tool(
|
66 |
+
clinical_retriever,
|
67 |
+
"clinical_db_tool",
|
68 |
+
"Search clinical trial outcomes for repurposing evidence."
|
69 |
)
|
70 |
+
tools = [mechanism_tool, clinical_tool]
|
71 |
|
72 |
+
# Define the AgentState type for our workflow
|
73 |
class AgentState(TypedDict):
|
74 |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
75 |
|
76 |
+
# Agent function: Classifies queries as targeting drug mechanisms or clinical outcomes
|
77 |
def agent(state: AgentState):
|
78 |
+
print("---CALL AGENT---")
|
79 |
messages = state["messages"]
|
80 |
+
user_message = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
|
81 |
+
|
82 |
+
# Build a prompt to classify the query
|
83 |
+
prompt = f"""Given the user question: "{user_message}"
|
84 |
+
If the question is about the molecular mechanism or pharmacodynamics, respond EXACTLY in this format:
|
85 |
+
SEARCH_MECHANISM: <search terms>
|
86 |
+
|
87 |
+
If it's about clinical trial outcomes, efficacy, or safety evidence, respond EXACTLY in this format:
|
88 |
+
SEARCH_CLINICAL: <search terms>
|
89 |
+
|
90 |
+
Otherwise, answer directly with general repurposing insights.
|
91 |
+
"""
|
92 |
+
# (Here we simulate a call to DeepSeek-R1 using a dummy response)
|
93 |
+
# In a real implementation, make an API call to DeepSeek-R1.
|
94 |
+
if "mechanism" in user_message.lower() or "how it works" in user_message.lower():
|
95 |
+
response_text = f"SEARCH_MECHANISM: {user_message}"
|
96 |
+
elif "trial" in user_message.lower() or "efficacy" in user_message.lower() or "safety" in user_message.lower():
|
97 |
+
response_text = f"SEARCH_CLINICAL: {user_message}"
|
98 |
+
else:
|
99 |
+
response_text = "The system did not classify your query. Please rephrase to focus on drug mechanism or clinical data."
|
100 |
+
|
101 |
+
print("Agent response:", response_text)
|
102 |
+
# Format response into expected tool call format
|
103 |
+
if "SEARCH_MECHANISM:" in response_text:
|
104 |
+
query = response_text.split("SEARCH_MECHANISM:")[1].strip()
|
105 |
+
result = mechanism_tool(query)
|
106 |
+
return {"messages": [AIMessage(content=f'Action: mechanism_db_tool\n{{"query": "{query}"}}\n\nResults: {result}')]}
|
107 |
+
|
108 |
+
elif "SEARCH_CLINICAL:" in response_text:
|
109 |
+
query = response_text.split("SEARCH_CLINICAL:")[1].strip()
|
110 |
+
result = clinical_tool(query)
|
111 |
+
return {"messages": [AIMessage(content=f'Action: clinical_db_tool\n{{"query": "{query}"}}\n\nResults: {result}')]}
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
else:
|
114 |
+
return {"messages": [AIMessage(content=response_text)]}
|
|
|
|
|
115 |
|
116 |
+
# Grading function: Checks if retrieved documents were found
|
117 |
def simple_grade_documents(state: AgentState):
|
118 |
+
messages = state["messages"]
|
119 |
+
last_message = messages[-1]
|
120 |
+
print("Evaluating message:", last_message.content)
|
121 |
+
if "Results:" in last_message.content and "No relevant" not in last_message.content:
|
122 |
+
print("---DATA FOUND, PROCEED TO GENERATE INSIGHTS---")
|
123 |
return "generate"
|
124 |
else:
|
125 |
+
print("---NO DATA FOUND, TRY REWRITE---")
|
126 |
return "rewrite"
|
127 |
|
128 |
+
# Generate function: Synthesizes repurposing insights from retrieved data
|
129 |
def generate(state: AgentState):
|
130 |
+
print("---GENERATE FINAL INSIGHTS---")
|
131 |
messages = state["messages"]
|
132 |
+
question = messages[0].content
|
133 |
last_message = messages[-1]
|
134 |
+
# Extract data from results
|
135 |
+
data_start = last_message.content.find("Results:")
|
136 |
+
retrieved_data = last_message.content[data_start:] if data_start != -1 else "No data available"
|
137 |
+
# Build a prompt to synthesize insights
|
138 |
+
prompt = f"""Based on the following retrieved data:
|
139 |
+
{retrieved_data}
|
140 |
+
and considering the question:
|
141 |
+
{question}
|
142 |
+
Summarize potential drug repurposing opportunities and any recommended next steps for further investigation.
|
143 |
+
"""
|
144 |
+
# Dummy generation using a simple echo for demonstration.
|
145 |
+
final_answer = f"Summary Insight: Considering the data, a promising repurposing opportunity is to explore Drug A for anti-inflammatory applications beyond its original use, and Drug B might be repurposed for neurodegenerative conditions. Further research should validate these hypotheses."
|
146 |
+
print("Final Answer:", final_answer)
|
147 |
+
return {"messages": [AIMessage(content=final_answer)]}
|
148 |
+
|
149 |
+
# Rewrite function: If no data is found, help rephrase the query for clarity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def rewrite(state: AgentState):
|
151 |
+
print("---REWRITE QUESTION---")
|
152 |
+
messages = state["messages"]
|
153 |
+
original_question = messages[0].content if messages else "N/A"
|
154 |
+
# Dummy rewrite that just appends "Please specify mechanism or trial data" for demonstration.
|
155 |
+
rewritten = f"{original_question} (Please specify if you are asking about drug mechanism or clinical trial outcomes.)"
|
156 |
+
print("Rewritten question:", rewritten)
|
157 |
+
return {"messages": [AIMessage(content=rewritten)]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
# Decision function: Determines next step based on last message content
|
160 |
def custom_tools_condition(state: AgentState):
|
161 |
+
messages = state["messages"]
|
162 |
+
last_message = messages[-1]
|
163 |
+
content = last_message.content
|
164 |
+
if content.startswith("Action:"):
|
165 |
+
print("Tool action detected. Proceed to retrieval.")
|
166 |
return "tools"
|
167 |
return END
|
168 |
|
169 |
+
# Create the workflow graph
|
170 |
workflow = StateGraph(AgentState)
|
171 |
workflow.add_node("agent", agent)
|
172 |
retrieve_node = ToolNode(tools)
|
173 |
workflow.add_node("retrieve", retrieve_node)
|
174 |
workflow.add_node("rewrite", rewrite)
|
175 |
workflow.add_node("generate", generate)
|
176 |
+
|
177 |
+
# Define workflow edges
|
178 |
workflow.add_edge(START, "agent")
|
179 |
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
|
180 |
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
181 |
workflow.add_edge("generate", END)
|
182 |
workflow.add_edge("rewrite", "agent")
|
183 |
+
app = workflow.compile()
|
184 |
|
185 |
+
# Function to process a query through the workflow
|
186 |
+
def process_question(user_question: str, app, config: dict):
|
187 |
events = []
|
188 |
for event in app.stream({"messages": [("user", user_question)]}, config):
|
189 |
events.append(event)
|
190 |
return events
|
191 |
|
192 |
+
# Streamlit UI for the Drug Repurposing Advisor
|
193 |
def main():
|
194 |
+
st.set_page_config(
|
195 |
+
page_title="Drug Repurposing Advisor",
|
196 |
+
layout="wide",
|
197 |
+
initial_sidebar_state="expanded"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
+
st.title("💊 Drug Repurposing Advisor")
|
200 |
+
st.markdown("### Explore potential drug repurposing opportunities with AI-driven insights.")
|
201 |
+
query = st.text_area("Enter your research question:",
|
202 |
+
placeholder="e.g., Can Drug A be repurposed for neurodegenerative diseases?")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
col1, col2 = st.columns([1, 2])
|
204 |
with col1:
|
205 |
+
if st.button("🔍 Get Insights", use_container_width=True):
|
206 |
if query:
|
207 |
+
with st.spinner("Processing your query..."):
|
208 |
+
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
|
209 |
for event in events:
|
210 |
if 'agent' in event:
|
211 |
+
with st.expander("Agent Processing Step", expanded=True):
|
212 |
content = event['agent']['messages'][0].content
|
213 |
+
st.markdown(f"**Agent Step Output:**\n\n{content}")
|
|
|
|
|
|
|
214 |
elif 'generate' in event:
|
215 |
+
st.markdown("### Final Insights:")
|
216 |
st.success(event['generate']['messages'][0].content)
|
217 |
+
elif 'rewrite' in event:
|
218 |
+
st.markdown("### Suggestion:")
|
219 |
+
st.warning(event['rewrite']['messages'][0].content)
|
220 |
else:
|
221 |
+
st.warning("⚠️ Please enter a query.")
|
222 |
with col2:
|
223 |
+
st.markdown("""
|
224 |
+
**How to Use the Drug Repurposing Advisor:**
|
225 |
+
1. **Input Query:** Describe your research question. Specify whether you are interested in drug mechanisms or clinical outcomes.
|
226 |
+
2. **Get Insights:** Click "Get Insights" and let the system process your query.
|
227 |
+
3. **Review Output:** Explore the retrieved data and the final synthesized insights.
|
228 |
+
**Example Questions:**
|
229 |
+
- "How does Drug A work and could its mechanism be useful in treating inflammatory diseases?"
|
230 |
+
- "What are the clinical trial outcomes of Drug B and can it be repurposed for neurodegenerative conditions?"
|
231 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
232 |
if __name__ == "__main__":
|
233 |
main()
|