Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,332 +1,50 @@
|
|
1 |
-
# app.py
|
2 |
-
# Multi-Agent Chatbot with LangGraph, DeepSeek-R1, Function Calls, and Agentic RAG
|
3 |
-
# Using local (in-memory) Chroma to avoid tenant errors.
|
4 |
-
#
|
5 |
-
# Ensure that the environment variables OPENAI_API_KEY and DEEP_SEEK_API are set in your HF Space Secrets.
|
6 |
-
|
7 |
-
import os
|
8 |
-
import re
|
9 |
-
import logging
|
10 |
import streamlit as st
|
11 |
-
import requests
|
12 |
-
from typing import Sequence
|
13 |
-
from typing_extensions import TypedDict, Annotated
|
14 |
-
|
15 |
-
# LangChain imports
|
16 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
17 |
-
from langchain.vectorstores import Chroma
|
18 |
-
from langchain.schema import HumanMessage, AIMessage
|
19 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
-
from langchain.tools.retriever import create_retriever_tool
|
21 |
-
|
22 |
-
# Chroma in-memory settings
|
23 |
-
from chromadb.config import Settings
|
24 |
-
|
25 |
-
# LangGraph imports
|
26 |
-
from langgraph.graph import END, StateGraph, START
|
27 |
-
from langgraph.prebuilt import ToolNode
|
28 |
-
from langgraph.graph.message import add_messages
|
29 |
-
|
30 |
-
# Configure logging
|
31 |
-
logging.basicConfig(level=logging.INFO)
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
|
34 |
-
# --- Dummy Data Setup ---
|
35 |
-
research_texts = [
|
36 |
-
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
37 |
-
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
38 |
-
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
39 |
-
]
|
40 |
-
|
41 |
-
development_texts = [
|
42 |
-
"Project A: UI Design Completed, API Integration in Progress",
|
43 |
-
"Project B: Testing New Feature X, Bug Fixes Needed",
|
44 |
-
"Product Y: In the Performance Optimization Stage Before Release"
|
45 |
-
]
|
46 |
-
|
47 |
-
# --- Chroma Client Settings (in-memory) ---
|
48 |
-
client_settings = Settings(
|
49 |
-
chroma_api_impl="local",
|
50 |
-
persist_directory=None # Use None for ephemeral in-memory DB; or specify a folder to persist data.
|
51 |
-
)
|
52 |
-
|
53 |
-
# --- Preprocessing & Embeddings ---
|
54 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
55 |
-
research_docs = splitter.create_documents(research_texts)
|
56 |
-
development_docs = splitter.create_documents(development_texts)
|
57 |
-
|
58 |
-
embeddings = OpenAIEmbeddings(
|
59 |
-
model="text-embedding-3-large",
|
60 |
-
openai_api_key=os.environ.get("OPENAI_API_KEY") # Set this in your HF Secrets.
|
61 |
-
)
|
62 |
-
|
63 |
-
# Create vector stores using local in-memory Chroma
|
64 |
-
research_vectorstore = Chroma.from_documents(
|
65 |
-
documents=research_docs,
|
66 |
-
embedding=embeddings,
|
67 |
-
collection_name="research_collection",
|
68 |
-
client_settings=client_settings
|
69 |
-
)
|
70 |
-
development_vectorstore = Chroma.from_documents(
|
71 |
-
documents=development_docs,
|
72 |
-
embedding=embeddings,
|
73 |
-
collection_name="development_collection",
|
74 |
-
client_settings=client_settings
|
75 |
-
)
|
76 |
-
|
77 |
-
research_retriever = research_vectorstore.as_retriever()
|
78 |
-
development_retriever = development_vectorstore.as_retriever()
|
79 |
-
|
80 |
-
research_tool = create_retriever_tool(
|
81 |
-
research_retriever,
|
82 |
-
"research_db_tool",
|
83 |
-
"Search information from the research database."
|
84 |
-
)
|
85 |
-
development_tool = create_retriever_tool(
|
86 |
-
development_retriever,
|
87 |
-
"development_db_tool",
|
88 |
-
"Search information from the development database."
|
89 |
-
)
|
90 |
-
|
91 |
-
tools = [research_tool, development_tool]
|
92 |
-
|
93 |
-
# --- Agent and Workflow Functions ---
|
94 |
-
# Use only AIMessage and HumanMessage for message types.
|
95 |
-
class AgentState(TypedDict):
|
96 |
-
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
97 |
-
|
98 |
-
def agent(state: AgentState):
|
99 |
-
logger.info("Agent invoked")
|
100 |
-
messages = state["messages"]
|
101 |
-
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
|
102 |
|
103 |
-
prompt = f"""Given this user question: "{user_message}"
|
104 |
-
If it's about research or academic topics, respond EXACTLY in this format:
|
105 |
-
SEARCH_RESEARCH: <search terms>
|
106 |
-
|
107 |
-
If it's about development status, respond EXACTLY in this format:
|
108 |
-
SEARCH_DEV: <search terms>
|
109 |
-
|
110 |
-
Otherwise, just answer directly.
|
111 |
-
"""
|
112 |
-
headers = {
|
113 |
-
"Accept": "application/json",
|
114 |
-
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
115 |
-
"Content-Type": "application/json"
|
116 |
-
}
|
117 |
-
data = {
|
118 |
-
"model": "deepseek-chat",
|
119 |
-
"messages": [{"role": "user", "content": prompt}],
|
120 |
-
"temperature": 0.7,
|
121 |
-
"max_tokens": 1024
|
122 |
-
}
|
123 |
-
response = requests.post(
|
124 |
-
"https://api.deepseek.com/v1/chat/completions",
|
125 |
-
headers=headers,
|
126 |
-
json=data,
|
127 |
-
verify=False
|
128 |
-
)
|
129 |
-
if response.status_code == 200:
|
130 |
-
response_text = response.json()['choices'][0]['message']['content']
|
131 |
-
logger.info(f"DeepSeek response: {response_text}")
|
132 |
-
if "SEARCH_RESEARCH:" in response_text:
|
133 |
-
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
134 |
-
results = research_retriever.invoke(query)
|
135 |
-
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
136 |
-
elif "SEARCH_DEV:" in response_text:
|
137 |
-
query = response_text.split("SEARCH_DEV:")[1].strip()
|
138 |
-
results = development_retriever.invoke(query)
|
139 |
-
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
140 |
-
else:
|
141 |
-
return {"messages": [AIMessage(content=response_text)]}
|
142 |
-
else:
|
143 |
-
error_msg = f"DeepSeek API call failed: {response.text}"
|
144 |
-
logger.error(error_msg)
|
145 |
-
raise Exception(error_msg)
|
146 |
-
|
147 |
-
def simple_grade_documents(state: AgentState):
|
148 |
-
last_message = state["messages"][-1]
|
149 |
-
logger.info(f"Grading message: {last_message.content}")
|
150 |
-
if "Results: [Document" in last_message.content:
|
151 |
-
return "generate"
|
152 |
-
else:
|
153 |
-
return "rewrite"
|
154 |
-
|
155 |
-
def generate(state: AgentState):
|
156 |
-
logger.info("Generating final answer")
|
157 |
-
messages = state["messages"]
|
158 |
-
question = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
|
159 |
-
last_message = messages[-1]
|
160 |
-
docs = ""
|
161 |
-
if "Results: [" in last_message.content:
|
162 |
-
docs = last_message.content[last_message.content.find("Results: ["):]
|
163 |
-
headers = {
|
164 |
-
"Accept": "application/json",
|
165 |
-
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
166 |
-
"Content-Type": "application/json"
|
167 |
-
}
|
168 |
-
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
169 |
-
Question: {question}
|
170 |
-
Documents: {docs}
|
171 |
-
Focus on extracting and synthesizing the key findings from the research papers.
|
172 |
-
"""
|
173 |
-
data = {
|
174 |
-
"model": "deepseek-chat",
|
175 |
-
"messages": [{"role": "user", "content": prompt}],
|
176 |
-
"temperature": 0.7,
|
177 |
-
"max_tokens": 1024
|
178 |
-
}
|
179 |
-
response = requests.post(
|
180 |
-
"https://api.deepseek.com/v1/chat/completions",
|
181 |
-
headers=headers,
|
182 |
-
json=data,
|
183 |
-
verify=False
|
184 |
-
)
|
185 |
-
if response.status_code == 200:
|
186 |
-
response_text = response.json()['choices'][0]['message']['content']
|
187 |
-
return {"messages": [AIMessage(content=response_text)]}
|
188 |
-
else:
|
189 |
-
error_msg = f"DeepSeek API generate call failed: {response.text}"
|
190 |
-
logger.error(error_msg)
|
191 |
-
raise Exception(error_msg)
|
192 |
-
|
193 |
-
def rewrite(state: AgentState):
|
194 |
-
logger.info("Rewriting question")
|
195 |
-
original_question = state["messages"][0].content if state["messages"] else "N/A"
|
196 |
-
headers = {
|
197 |
-
"Accept": "application/json",
|
198 |
-
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
199 |
-
"Content-Type": "application/json"
|
200 |
-
}
|
201 |
-
data = {
|
202 |
-
"model": "deepseek-chat",
|
203 |
-
"messages": [{"role": "user", "content": f"Rewrite this question to be more specific and clearer: {original_question}"}],
|
204 |
-
"temperature": 0.7,
|
205 |
-
"max_tokens": 1024
|
206 |
-
}
|
207 |
-
response = requests.post(
|
208 |
-
"https://api.deepseek.com/v1/chat/completions",
|
209 |
-
headers=headers,
|
210 |
-
json=data,
|
211 |
-
verify=False
|
212 |
-
)
|
213 |
-
if response.status_code == 200:
|
214 |
-
response_text = response.json()['choices'][0]['message']['content']
|
215 |
-
return {"messages": [AIMessage(content=response_text)]}
|
216 |
-
else:
|
217 |
-
error_msg = f"DeepSeek API rewrite call failed: {response.text}"
|
218 |
-
logger.error(error_msg)
|
219 |
-
raise Exception(error_msg)
|
220 |
-
|
221 |
-
tools_pattern = re.compile(r"Action: .*")
|
222 |
-
def custom_tools_condition(state: AgentState):
|
223 |
-
last_message = state["messages"][-1]
|
224 |
-
if tools_pattern.match(last_message.content):
|
225 |
-
return "tools"
|
226 |
-
return END
|
227 |
-
|
228 |
-
# Build the workflow with LangGraph's StateGraph
|
229 |
-
workflow = StateGraph(AgentState)
|
230 |
-
workflow.add_node("agent", agent)
|
231 |
-
retrieve_node = ToolNode(tools)
|
232 |
-
workflow.add_node("retrieve", retrieve_node)
|
233 |
-
workflow.add_node("rewrite", rewrite)
|
234 |
-
workflow.add_node("generate", generate)
|
235 |
-
workflow.add_edge(START, "agent")
|
236 |
-
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
|
237 |
-
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
238 |
-
workflow.add_edge("generate", END)
|
239 |
-
workflow.add_edge("rewrite", "agent")
|
240 |
-
app_workflow = workflow.compile()
|
241 |
-
|
242 |
-
def process_question(user_question, app, config):
|
243 |
-
events = []
|
244 |
-
for event in app.stream({"messages": [("user", user_question)]}, config):
|
245 |
-
events.append(event)
|
246 |
-
return events
|
247 |
-
|
248 |
-
# --- Streamlit UI ---
|
249 |
def main():
|
250 |
st.set_page_config(
|
251 |
-
page_title="
|
252 |
layout="wide",
|
253 |
initial_sidebar_state="expanded"
|
254 |
)
|
255 |
|
256 |
-
#
|
257 |
st.markdown("""
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
281 |
""", unsafe_allow_html=True)
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
st.header("📚 Available Data")
|
286 |
-
st.subheader("Research Database")
|
287 |
-
for text in research_texts:
|
288 |
-
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
289 |
-
st.subheader("Development Database")
|
290 |
-
for text in development_texts:
|
291 |
-
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
292 |
-
|
293 |
-
st.title("🤖 Multi-Agent Chatbot")
|
294 |
-
st.markdown("---")
|
295 |
-
|
296 |
-
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
297 |
-
|
298 |
-
col1, col2 = st.columns([1, 2])
|
299 |
-
with col1:
|
300 |
-
if st.button("🔍 Get Answer", use_container_width=True):
|
301 |
-
if query:
|
302 |
-
with st.spinner("Processing your question..."):
|
303 |
-
events = process_question(query, app_workflow, {"configurable": {"thread_id": "1"}})
|
304 |
-
for event in events:
|
305 |
-
# Display processing steps
|
306 |
-
if 'agent' in event:
|
307 |
-
with st.expander("🔄 Processing Step", expanded=True):
|
308 |
-
content = event['agent']['messages'][0].content
|
309 |
-
if "Results:" in content:
|
310 |
-
st.markdown("### 📑 Retrieved Documents:")
|
311 |
-
docs = content[content.find("Results:"):]
|
312 |
-
st.info(docs)
|
313 |
-
elif 'generate' in event:
|
314 |
-
st.markdown("### ✨ Final Answer:")
|
315 |
-
st.success(event['generate']['messages'][0].content)
|
316 |
-
else:
|
317 |
-
st.warning("⚠️ Please enter a question first!")
|
318 |
-
with col2:
|
319 |
-
st.markdown("""
|
320 |
-
### 🎯 How to Use
|
321 |
-
1. Type your question in the text box.
|
322 |
-
2. Click "Get Answer" to process.
|
323 |
-
3. View retrieved documents and the final answer.
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
- What are the current trends in machine learning?
|
329 |
-
""")
|
330 |
|
331 |
if __name__ == "__main__":
|
332 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def main():
|
4 |
st.set_page_config(
|
5 |
+
page_title="Enhanced Contrast Chatbot",
|
6 |
layout="wide",
|
7 |
initial_sidebar_state="expanded"
|
8 |
)
|
9 |
|
10 |
+
# Custom CSS to improve text visibility
|
11 |
st.markdown("""
|
12 |
+
<style>
|
13 |
+
/* Force a white background for the main app area */
|
14 |
+
.stApp {
|
15 |
+
background-color: #ffffff !important;
|
16 |
+
}
|
17 |
+
|
18 |
+
/* Make text darker for better contrast */
|
19 |
+
html, body, [class^="css"] {
|
20 |
+
color: #111111 !important;
|
21 |
+
}
|
22 |
+
|
23 |
+
/* Adjust label text (like "Enter your question") */
|
24 |
+
.stTextArea label {
|
25 |
+
color: #111111 !important;
|
26 |
+
}
|
27 |
+
|
28 |
+
/* Make sure sidebar text is also dark */
|
29 |
+
.css-1v3fvcr {
|
30 |
+
color: #111111 !important;
|
31 |
+
}
|
32 |
+
|
33 |
+
/* Example: You can also adjust the background color of
|
34 |
+
your "data-box" classes if needed */
|
35 |
+
.data-box {
|
36 |
+
background-color: #f0f0f0 !important;
|
37 |
+
color: #111111 !important;
|
38 |
+
}
|
39 |
+
</style>
|
40 |
""", unsafe_allow_html=True)
|
41 |
|
42 |
+
st.title("Enhanced Contrast Chatbot")
|
43 |
+
st.markdown("Try typing your question below to see if the text is clearer now:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
user_query = st.text_area("Enter your question here:")
|
46 |
+
if st.button("Submit"):
|
47 |
+
st.write("Your query:", user_query)
|
|
|
|
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
main()
|