Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,546 +9,444 @@ from langgraph.graph import END, StateGraph
|
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
-
from typing import Sequence
|
13 |
import chromadb
|
14 |
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
|
|
|
|
|
|
18 |
from langchain.tools.retriever import create_retriever_tool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# ------------------------------
|
21 |
# Configuration
|
22 |
# ------------------------------
|
23 |
-
|
24 |
-
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
3. Add a secret named DEEPSEEK_API_KEY
|
33 |
-
""")
|
34 |
-
st.stop()
|
35 |
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
# ------------------------------
|
45 |
-
#
|
46 |
# ------------------------------
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
49 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
50 |
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
51 |
-
]
|
52 |
|
53 |
-
|
54 |
"Project A: UI Design Completed, API Integration in Progress",
|
55 |
"Project B: Testing New Feature X, Bug Fixes Needed",
|
56 |
"Product Y: In the Performance Optimization Stage Before Release"
|
57 |
-
]
|
58 |
-
|
59 |
-
# ------------------------------
|
60 |
-
# Text Splitting & Document Creation
|
61 |
-
# ------------------------------
|
62 |
-
splitter = RecursiveCharacterTextSplitter(
|
63 |
-
chunk_size=300,
|
64 |
-
chunk_overlap=30,
|
65 |
-
separators=["\n\n", "\n", ". ", "! ", "? ", " "]
|
66 |
-
)
|
67 |
-
|
68 |
-
research_docs = splitter.create_documents(research_texts)
|
69 |
-
development_docs = splitter.create_documents(development_texts)
|
70 |
-
|
71 |
-
# ------------------------------
|
72 |
-
# Creating Vector Stores with Embeddings
|
73 |
-
# ------------------------------
|
74 |
-
embeddings = OpenAIEmbeddings(
|
75 |
-
model="text-embedding-3-large",
|
76 |
-
# dimensions=1024 # Uncomment if needed
|
77 |
-
)
|
78 |
-
|
79 |
-
research_vectorstore = Chroma.from_documents(
|
80 |
-
documents=research_docs,
|
81 |
-
embedding=embeddings,
|
82 |
-
client=chroma_client,
|
83 |
-
collection_name="research_collection"
|
84 |
-
)
|
85 |
-
|
86 |
-
development_vectorstore = Chroma.from_documents(
|
87 |
-
documents=development_docs,
|
88 |
-
embedding=embeddings,
|
89 |
-
client=chroma_client,
|
90 |
-
collection_name="development_collection"
|
91 |
-
)
|
92 |
|
93 |
# ------------------------------
|
94 |
-
#
|
95 |
# ------------------------------
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
)
|
119 |
-
|
120 |
-
development_tool = create_retriever_tool(
|
121 |
-
development_retriever,
|
122 |
-
"development_db_tool",
|
123 |
-
"Search information from the development database."
|
124 |
-
)
|
125 |
|
126 |
-
|
127 |
|
128 |
# ------------------------------
|
129 |
-
#
|
130 |
# ------------------------------
|
131 |
-
class
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
print("---CALL AGENT---")
|
136 |
-
messages = state["messages"]
|
137 |
-
|
138 |
-
if isinstance(messages[0], tuple):
|
139 |
-
user_message = messages[0][1]
|
140 |
-
else:
|
141 |
-
user_message = messages[0].content
|
142 |
-
|
143 |
-
prompt = f"""Given this user question: "{user_message}"
|
144 |
-
If it's about research or academic topics, respond EXACTLY in this format:
|
145 |
-
SEARCH_RESEARCH: <search terms>
|
146 |
-
|
147 |
-
If it's about development status, respond EXACTLY in this format:
|
148 |
-
SEARCH_DEV: <search terms>
|
149 |
-
|
150 |
-
Otherwise, just answer directly.
|
151 |
-
"""
|
152 |
-
|
153 |
-
headers = {
|
154 |
-
"Accept": "application/json",
|
155 |
-
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
156 |
-
"Content-Type": "application/json"
|
157 |
-
}
|
158 |
-
|
159 |
-
data = {
|
160 |
-
"model": "deepseek-chat",
|
161 |
-
"messages": [{"role": "user", "content": prompt}],
|
162 |
-
"temperature": 0.7,
|
163 |
-
"max_tokens": 1024
|
164 |
-
}
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
)
|
174 |
-
response.raise_for_status()
|
175 |
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
181 |
-
results = research_retriever.invoke(query)
|
182 |
-
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
183 |
-
|
184 |
-
elif "SEARCH_DEV:" in response_text:
|
185 |
-
query = response_text.split("SEARCH_DEV:")[1].strip()
|
186 |
-
results = development_retriever.invoke(query)
|
187 |
-
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
188 |
-
|
189 |
-
else:
|
190 |
-
return {"messages": [AIMessage(content=response_text)]}
|
191 |
-
|
192 |
-
except Exception as e:
|
193 |
-
error_msg = f"API Error: {str(e)}"
|
194 |
-
if "Insufficient Balance" in str(e):
|
195 |
-
error_msg += "\n\nPlease check your DeepSeek API account balance."
|
196 |
-
return {"messages": [AIMessage(content=error_msg)]}
|
197 |
-
|
198 |
-
def simple_grade_documents(state: AgentState):
|
199 |
-
messages = state["messages"]
|
200 |
-
last_message = messages[-1]
|
201 |
-
print("Evaluating message:", last_message.content)
|
202 |
-
|
203 |
-
if "Results: [Document" in last_message.content:
|
204 |
-
print("---DOCS FOUND, GO TO GENERATE---")
|
205 |
-
return "generate"
|
206 |
-
else:
|
207 |
-
print("---NO DOCS FOUND, TRY REWRITE---")
|
208 |
-
return "rewrite"
|
209 |
-
|
210 |
-
def generate(state: AgentState):
|
211 |
-
print("---GENERATE FINAL ANSWER---")
|
212 |
-
messages = state["messages"]
|
213 |
-
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
|
214 |
-
last_message = messages[-1]
|
215 |
-
|
216 |
-
docs = ""
|
217 |
-
if "Results: [" in last_message.content:
|
218 |
-
results_start = last_message.content.find("Results: [")
|
219 |
-
docs = last_message.content[results_start:]
|
220 |
-
print("Documents found:", docs)
|
221 |
-
|
222 |
-
headers = {
|
223 |
-
"Accept": "application/json",
|
224 |
-
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
225 |
-
"Content-Type": "application/json"
|
226 |
-
}
|
227 |
-
|
228 |
-
prompt = f"""Analyze these research documents and provide structured insights:
|
229 |
-
Question: {question}
|
230 |
-
Documents: {docs}
|
231 |
-
|
232 |
-
Format your response with:
|
233 |
-
1. Key Findings section with bullet points
|
234 |
-
2. Technical Innovations section
|
235 |
-
3. Potential Applications
|
236 |
-
4. References to source documents (Doc1, Doc2, etc.)
|
237 |
-
|
238 |
-
Focus on:
|
239 |
-
- Distilling unique insights
|
240 |
-
- Connecting different research aspects
|
241 |
-
- Highlighting practical implications
|
242 |
-
"""
|
243 |
-
|
244 |
-
data = {
|
245 |
-
"model": "deepseek-chat",
|
246 |
-
"messages": [{
|
247 |
-
"role": "user",
|
248 |
-
"content": prompt
|
249 |
-
}],
|
250 |
-
"temperature": 0.7,
|
251 |
-
"max_tokens": 1024
|
252 |
-
}
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
"
|
258 |
-
|
259 |
-
|
260 |
-
verify=False,
|
261 |
-
timeout=30
|
262 |
-
)
|
263 |
-
response.raise_for_status()
|
264 |
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
282 |
|
283 |
-
|
284 |
-
"
|
285 |
-
|
286 |
-
"
|
287 |
-
|
288 |
-
}],
|
289 |
-
"temperature": 0.7,
|
290 |
-
"max_tokens": 1024
|
291 |
-
}
|
292 |
-
|
293 |
-
try:
|
294 |
-
print("Sending rewrite request...")
|
295 |
-
response = requests.post(
|
296 |
-
"https://api.deepseek.com/v1/chat/completions",
|
297 |
-
headers=headers,
|
298 |
-
json=data,
|
299 |
-
verify=False,
|
300 |
-
timeout=30
|
301 |
-
)
|
302 |
-
response.raise_for_status()
|
303 |
-
|
304 |
-
response_text = response.json()['choices'][0]['message']['content']
|
305 |
-
print("Rewritten question:", response_text)
|
306 |
-
return {"messages": [AIMessage(content=response_text)]}
|
307 |
-
except Exception as e:
|
308 |
-
error_msg = f"Rewrite Error: {str(e)}"
|
309 |
-
return {"messages": [AIMessage(content=error_msg)]}
|
310 |
-
|
311 |
-
tools_pattern = re.compile(r"Action: .*")
|
312 |
-
|
313 |
-
def custom_tools_condition(state: AgentState):
|
314 |
-
messages = state["messages"]
|
315 |
-
last_message = messages[-1]
|
316 |
-
content = last_message.content
|
317 |
-
|
318 |
-
print("Checking tools condition:", content)
|
319 |
-
if tools_pattern.match(content):
|
320 |
-
print("Moving to retrieve...")
|
321 |
-
return "tools"
|
322 |
-
print("Moving to END...")
|
323 |
-
return END
|
324 |
-
|
325 |
-
# ------------------------------
|
326 |
-
# Workflow Configuration using LangGraph
|
327 |
-
# ------------------------------
|
328 |
-
workflow = StateGraph(AgentState)
|
329 |
-
|
330 |
-
# Add nodes
|
331 |
-
workflow.add_node("agent", agent)
|
332 |
-
retrieve_node = ToolNode(tools)
|
333 |
-
workflow.add_node("retrieve", retrieve_node)
|
334 |
-
workflow.add_node("rewrite", rewrite)
|
335 |
-
workflow.add_node("generate", generate)
|
336 |
-
|
337 |
-
# Set entry point
|
338 |
-
workflow.set_entry_point("agent")
|
339 |
-
|
340 |
-
# Define transitions
|
341 |
-
workflow.add_conditional_edges(
|
342 |
-
"agent",
|
343 |
-
custom_tools_condition,
|
344 |
-
{
|
345 |
-
"tools": "retrieve",
|
346 |
-
END: END
|
347 |
-
}
|
348 |
-
)
|
349 |
-
|
350 |
-
workflow.add_conditional_edges(
|
351 |
-
"retrieve",
|
352 |
-
simple_grade_documents,
|
353 |
-
{
|
354 |
-
"generate": "generate",
|
355 |
-
"rewrite": "rewrite"
|
356 |
-
}
|
357 |
-
)
|
358 |
-
|
359 |
-
workflow.add_edge("generate", END)
|
360 |
-
workflow.add_edge("rewrite", "agent")
|
361 |
-
|
362 |
-
# Compile the workflow
|
363 |
-
app = workflow.compile()
|
364 |
|
365 |
# ------------------------------
|
366 |
-
#
|
367 |
# ------------------------------
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
# ------------------------------
|
376 |
-
#
|
377 |
# ------------------------------
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
)
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
.stTextArea textarea {
|
393 |
-
background-color: #2d2d2d !important;
|
394 |
-
color: #ffffff !important;
|
395 |
-
border: 1px solid #3d3d3d;
|
396 |
-
}
|
397 |
-
|
398 |
-
.stButton > button {
|
399 |
-
background-color: #4CAF50;
|
400 |
-
color: white;
|
401 |
-
border: none;
|
402 |
-
padding: 12px 28px;
|
403 |
-
border-radius: 6px;
|
404 |
-
transition: all 0.3s;
|
405 |
-
font-weight: 500;
|
406 |
-
}
|
407 |
-
|
408 |
-
.stButton > button:hover {
|
409 |
-
background-color: #45a049;
|
410 |
-
transform: scale(1.02);
|
411 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.2);
|
412 |
-
}
|
413 |
-
|
414 |
-
.data-box {
|
415 |
-
padding: 18px;
|
416 |
-
margin: 12px 0;
|
417 |
-
border-radius: 8px;
|
418 |
-
background-color: #2d2d2d;
|
419 |
-
border-left: 4px solid;
|
420 |
-
}
|
421 |
-
|
422 |
-
.research-box {
|
423 |
-
border-color: #2196F3;
|
424 |
-
}
|
425 |
-
|
426 |
-
.dev-box {
|
427 |
-
border-color: #4CAF50;
|
428 |
-
}
|
429 |
-
|
430 |
-
.st-expander {
|
431 |
-
background-color: #2d2d2d;
|
432 |
-
border: 1px solid #3d3d3d;
|
433 |
-
border-radius: 6px;
|
434 |
-
margin: 16px 0;
|
435 |
-
}
|
436 |
-
|
437 |
-
.st-expander .streamlit-expanderHeader {
|
438 |
-
color: #ffffff !important;
|
439 |
-
font-weight: 500;
|
440 |
-
}
|
441 |
-
|
442 |
-
.stAlert {
|
443 |
-
background-color: #2d2d2d !important;
|
444 |
-
border: 1px solid #3d3d3d;
|
445 |
-
}
|
446 |
-
|
447 |
-
h1, h2, h3 {
|
448 |
-
color: #ffffff !important;
|
449 |
-
border-bottom: 2px solid #3d3d3d;
|
450 |
-
padding-bottom: 8px;
|
451 |
-
}
|
452 |
-
|
453 |
-
.stMarkdown {
|
454 |
-
color: #e0e0e0;
|
455 |
-
line-height: 1.6;
|
456 |
-
}
|
457 |
-
</style>
|
458 |
-
""", unsafe_allow_html=True)
|
459 |
|
460 |
-
|
461 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
st.
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
st.markdown(f"""
|
502 |
-
**Document {i}**
|
503 |
-
{doc}
|
504 |
-
""")
|
505 |
-
elif 'generate' in event:
|
506 |
-
content = event['generate']['messages'][0].content
|
507 |
-
if "Error" in content:
|
508 |
-
st.error(content)
|
509 |
-
else:
|
510 |
-
st.markdown("### β¨ Final Answer")
|
511 |
-
st.markdown(f"""
|
512 |
-
<div style='
|
513 |
-
background-color: #2d2d2d;
|
514 |
-
padding: 20px;
|
515 |
-
border-radius: 8px;
|
516 |
-
margin-top: 16px;
|
517 |
-
'>
|
518 |
-
{content}
|
519 |
-
</div>
|
520 |
-
""", unsafe_allow_html=True)
|
521 |
-
except Exception as e:
|
522 |
-
st.error(f"""
|
523 |
-
**Processing Error**
|
524 |
-
{str(e)}
|
525 |
-
Please check:
|
526 |
-
- API key configuration
|
527 |
-
- Account balance
|
528 |
-
- Network connection
|
529 |
-
""")
|
530 |
-
else:
|
531 |
-
st.warning("β οΈ Please enter a question first!")
|
532 |
-
|
533 |
-
with col2:
|
534 |
-
st.markdown("""
|
535 |
-
### π― How to Use
|
536 |
-
1. **Enter** your question in the text box
|
537 |
-
2. **Click** the search button
|
538 |
-
3. **Review** processing steps
|
539 |
-
4. **Analyze** final structured answer
|
540 |
-
|
541 |
-
### π‘ Example Questions
|
542 |
-
- What's new in quantum machine learning?
|
543 |
-
- How is Project Y progressing?
|
544 |
-
- Recent breakthroughs in AI image recognition?
|
545 |
-
|
546 |
-
### π Search Features
|
547 |
-
- Automatic query optimization
|
548 |
-
- Technical document analysis
|
549 |
-
- Cross-project insights
|
550 |
-
- Source-aware reporting
|
551 |
-
""")
|
552 |
|
553 |
if __name__ == "__main__":
|
554 |
-
|
|
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
+
from typing import Sequence, Dict, List, Optional, Any
|
13 |
import chromadb
|
14 |
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
+
import hashlib
|
19 |
+
import json
|
20 |
+
import time
|
21 |
from langchain.tools.retriever import create_retriever_tool
|
22 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
+
from datetime import datetime
|
24 |
+
|
25 |
+
# ------------------------------
|
26 |
+
# State Schema Definition
|
27 |
+
# ------------------------------
|
28 |
+
class AgentState(TypedDict):
|
29 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
30 |
+
context: Dict[str, Any]
|
31 |
+
metadata: Dict[str, Any]
|
32 |
|
33 |
# ------------------------------
|
34 |
# Configuration
|
35 |
# ------------------------------
|
36 |
+
class ResearchConfig:
|
37 |
+
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
38 |
+
CHROMA_PATH = "chroma_db"
|
39 |
+
CHUNK_SIZE = 512
|
40 |
+
CHUNK_OVERLAP = 64
|
41 |
+
MAX_CONCURRENT_REQUESTS = 5
|
42 |
+
EMBEDDING_DIMENSIONS = 1536
|
43 |
+
DOCUMENT_MAP = {
|
44 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
|
45 |
+
"CV-Transformer Hybrid Architecture",
|
46 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
|
47 |
+
"Transformer Architecture Analysis",
|
48 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing":
|
49 |
+
"Quantum ML Frontiers"
|
50 |
+
}
|
51 |
+
ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
|
52 |
+
{context}
|
53 |
|
54 |
+
Respond with:
|
55 |
+
1. Key Technical Contributions (bullet points)
|
56 |
+
2. Novel Methodologies
|
57 |
+
3. Empirical Results (with metrics)
|
58 |
+
4. Potential Applications
|
59 |
+
5. Limitations & Future Directions
|
|
|
|
|
|
|
60 |
|
61 |
+
Format: Markdown with LaTeX mathematical notation where applicable
|
62 |
+
"""
|
63 |
|
64 |
+
# Validation
|
65 |
+
if not ResearchConfig.DEEPSEEK_API_KEY:
|
66 |
+
st.error("""**Research Portal Configuration Required**
|
67 |
+
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
|
68 |
+
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
|
69 |
+
3. Rebuild deployment""")
|
70 |
+
st.stop()
|
71 |
|
72 |
# ------------------------------
|
73 |
+
# Quantum Document Processing
|
74 |
# ------------------------------
|
75 |
+
class QuantumDocumentManager:
|
76 |
+
def __init__(self):
|
77 |
+
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
|
78 |
+
self.embeddings = OpenAIEmbeddings(
|
79 |
+
model="text-embedding-3-large",
|
80 |
+
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
81 |
+
)
|
82 |
+
|
83 |
+
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
|
84 |
+
splitter = RecursiveCharacterTextSplitter(
|
85 |
+
chunk_size=ResearchConfig.CHUNK_SIZE,
|
86 |
+
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
87 |
+
separators=["\n\n", "\n", "|||"]
|
88 |
+
)
|
89 |
+
docs = splitter.create_documents(documents)
|
90 |
+
return Chroma.from_documents(
|
91 |
+
documents=docs,
|
92 |
+
embedding=self.embeddings,
|
93 |
+
client=self.client,
|
94 |
+
collection_name=collection_name,
|
95 |
+
ids=[self._document_id(doc.page_content) for doc in docs]
|
96 |
+
)
|
97 |
+
|
98 |
+
def _document_id(self, content: str) -> str:
|
99 |
+
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
100 |
+
|
101 |
+
# Initialize document collections
|
102 |
+
qdm = QuantumDocumentManager()
|
103 |
+
research_docs = qdm.create_collection([
|
104 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
105 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
106 |
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
107 |
+
], "research")
|
108 |
|
109 |
+
development_docs = qdm.create_collection([
|
110 |
"Project A: UI Design Completed, API Integration in Progress",
|
111 |
"Project B: Testing New Feature X, Bug Fixes Needed",
|
112 |
"Product Y: In the Performance Optimization Stage Before Release"
|
113 |
+
], "development")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# ------------------------------
|
116 |
+
# Advanced Retrieval System
|
117 |
# ------------------------------
|
118 |
+
class ResearchRetriever:
|
119 |
+
def __init__(self):
|
120 |
+
self.retrievers = {
|
121 |
+
"research": research_docs.as_retriever(
|
122 |
+
search_type="mmr",
|
123 |
+
search_kwargs={
|
124 |
+
'k': 4,
|
125 |
+
'fetch_k': 20,
|
126 |
+
'lambda_mult': 0.85
|
127 |
+
}
|
128 |
+
),
|
129 |
+
"development": development_docs.as_retriever(
|
130 |
+
search_type="similarity",
|
131 |
+
search_kwargs={'k': 3}
|
132 |
+
)
|
133 |
+
}
|
134 |
+
|
135 |
+
def retrieve(self, query: str, domain: str) -> List[Any]:
|
136 |
+
try:
|
137 |
+
return self.retrievers[domain].invoke(query)
|
138 |
+
except KeyError:
|
139 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
retriever = ResearchRetriever()
|
142 |
|
143 |
# ------------------------------
|
144 |
+
# Cognitive Processing Unit
|
145 |
# ------------------------------
|
146 |
+
class CognitiveProcessor:
|
147 |
+
def __init__(self):
|
148 |
+
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
149 |
+
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
def process_query(self, prompt: str) -> Dict:
|
152 |
+
futures = []
|
153 |
+
for _ in range(3): # Triple redundancy
|
154 |
+
futures.append(self.executor.submit(
|
155 |
+
self._execute_api_request,
|
156 |
+
prompt
|
157 |
+
))
|
|
|
|
|
158 |
|
159 |
+
results = []
|
160 |
+
for future in as_completed(futures):
|
161 |
+
try:
|
162 |
+
results.append(future.result())
|
163 |
+
except Exception as e:
|
164 |
+
st.error(f"Processing Error: {str(e)}")
|
165 |
|
166 |
+
return self._consensus_check(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
def _execute_api_request(self, prompt: str) -> Dict:
|
169 |
+
headers = {
|
170 |
+
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
171 |
+
"Content-Type": "application/json",
|
172 |
+
"X-Research-Session": self.session_id
|
173 |
+
}
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
try:
|
176 |
+
response = requests.post(
|
177 |
+
"https://api.deepseek.com/v1/chat/completions",
|
178 |
+
headers=headers,
|
179 |
+
json={
|
180 |
+
"model": "deepseek-chat",
|
181 |
+
"messages": [{
|
182 |
+
"role": "user",
|
183 |
+
"content": f"Respond as Senior AI Researcher:\n{prompt}"
|
184 |
+
}],
|
185 |
+
"temperature": 0.7,
|
186 |
+
"max_tokens": 1500,
|
187 |
+
"top_p": 0.9
|
188 |
+
},
|
189 |
+
timeout=45
|
190 |
+
)
|
191 |
+
response.raise_for_status()
|
192 |
+
return response.json()
|
193 |
+
except requests.exceptions.RequestException as e:
|
194 |
+
return {"error": str(e)}
|
195 |
|
196 |
+
def _consensus_check(self, results: List[Dict]) -> Dict:
|
197 |
+
valid = [r for r in results if "error" not in r]
|
198 |
+
if not valid:
|
199 |
+
return {"error": "All API requests failed"}
|
200 |
+
return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# ------------------------------
|
203 |
+
# Research Workflow Engine
|
204 |
# ------------------------------
|
205 |
+
class ResearchWorkflow:
|
206 |
+
def __init__(self):
|
207 |
+
self.processor = CognitiveProcessor()
|
208 |
+
self.workflow = StateGraph(AgentState)
|
209 |
+
self._build_workflow()
|
210 |
+
|
211 |
+
def _build_workflow(self):
|
212 |
+
self.workflow.add_node("ingest", self.ingest_query)
|
213 |
+
self.workflow.add_node("retrieve", self.retrieve_documents)
|
214 |
+
self.workflow.add_node("analyze", self.analyze_content)
|
215 |
+
self.workflow.add_node("validate", self.validate_output)
|
216 |
+
self.workflow.add_node("refine", self.refine_results)
|
217 |
+
|
218 |
+
self.workflow.set_entry_point("ingest")
|
219 |
+
self.workflow.add_edge("ingest", "retrieve")
|
220 |
+
self.workflow.add_edge("retrieve", "analyze")
|
221 |
+
self.workflow.add_conditional_edges(
|
222 |
+
"analyze",
|
223 |
+
self._quality_check,
|
224 |
+
{"valid": "validate", "invalid": "refine"}
|
225 |
+
)
|
226 |
+
self.workflow.add_edge("validate", END)
|
227 |
+
self.workflow.add_edge("refine", "retrieve")
|
228 |
+
|
229 |
+
self.app = self.workflow.compile()
|
230 |
+
|
231 |
+
def ingest_query(self, state: AgentState) -> Dict:
|
232 |
+
try:
|
233 |
+
query = state["messages"][-1].content
|
234 |
+
return {
|
235 |
+
"messages": [AIMessage(content="Query ingested successfully")],
|
236 |
+
"context": {"raw_query": query},
|
237 |
+
"metadata": {"timestamp": datetime.now().isoformat()}
|
238 |
+
}
|
239 |
+
except Exception as e:
|
240 |
+
return self._error_state(f"Ingestion Error: {str(e)}")
|
241 |
+
|
242 |
+
def retrieve_documents(self, state: AgentState) -> Dict:
|
243 |
+
try:
|
244 |
+
query = state["context"]["raw_query"]
|
245 |
+
docs = retriever.retrieve(query, "research")
|
246 |
+
return {
|
247 |
+
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
248 |
+
"context": {
|
249 |
+
"documents": docs,
|
250 |
+
"retrieval_time": time.time()
|
251 |
+
}
|
252 |
+
}
|
253 |
+
except Exception as e:
|
254 |
+
return self._error_state(f"Retrieval Error: {str(e)}")
|
255 |
+
|
256 |
+
def analyze_content(self, state: AgentState) -> Dict:
|
257 |
+
try:
|
258 |
+
docs = "\n\n".join([d.page_content for d in state["context"]["documents"]])
|
259 |
+
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
|
260 |
+
response = self.processor.process_query(prompt)
|
261 |
+
|
262 |
+
if "error" in response:
|
263 |
+
return self._error_state(response["error"])
|
264 |
+
|
265 |
+
return {
|
266 |
+
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
|
267 |
+
"context": {"analysis": response}
|
268 |
+
}
|
269 |
+
except Exception as e:
|
270 |
+
return self._error_state(f"Analysis Error: {str(e)}")
|
271 |
+
|
272 |
+
def validate_output(self, state: AgentState) -> Dict:
|
273 |
+
analysis = state["messages"][-1].content
|
274 |
+
validation_prompt = f"""Validate research analysis:
|
275 |
+
{analysis}
|
276 |
+
|
277 |
+
Check for:
|
278 |
+
1. Technical accuracy
|
279 |
+
2. Citation support
|
280 |
+
3. Logical consistency
|
281 |
+
4. Methodological soundness
|
282 |
+
|
283 |
+
Respond with 'VALID' or 'INVALID'"""
|
284 |
+
|
285 |
+
response = self.processor.process_query(validation_prompt)
|
286 |
+
return {
|
287 |
+
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
|
288 |
+
}
|
289 |
+
|
290 |
+
def refine_results(self, state: AgentState) -> Dict:
|
291 |
+
refinement_prompt = f"""Refine this analysis:
|
292 |
+
{state["messages"][-1].content}
|
293 |
+
|
294 |
+
Improve:
|
295 |
+
1. Technical precision
|
296 |
+
2. Empirical grounding
|
297 |
+
3. Theoretical coherence"""
|
298 |
+
|
299 |
+
response = self.processor.process_query(refinement_prompt)
|
300 |
+
return {
|
301 |
+
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
|
302 |
+
"context": state["context"]
|
303 |
+
}
|
304 |
+
|
305 |
+
def _quality_check(self, state: AgentState) -> str:
|
306 |
+
content = state["messages"][-1].content
|
307 |
+
return "valid" if "VALID" in content else "invalid"
|
308 |
+
|
309 |
+
def _error_state(self, message: str) -> Dict:
|
310 |
+
return {
|
311 |
+
"messages": [AIMessage(content=f"β {message}")],
|
312 |
+
"context": {"error": True},
|
313 |
+
"metadata": {"status": "error"}
|
314 |
+
}
|
315 |
|
316 |
# ------------------------------
|
317 |
+
# Research Interface
|
318 |
# ------------------------------
|
319 |
+
class ResearchInterface:
|
320 |
+
def __init__(self):
|
321 |
+
self.workflow = ResearchWorkflow()
|
322 |
+
self._initialize_interface()
|
323 |
+
|
324 |
+
def _initialize_interface(self):
|
325 |
+
st.set_page_config(
|
326 |
+
page_title="NeuroResearch AI",
|
327 |
+
layout="wide",
|
328 |
+
initial_sidebar_state="expanded"
|
329 |
+
)
|
330 |
+
self._inject_styles()
|
331 |
+
self._build_sidebar()
|
332 |
+
self._build_main_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
+
def _inject_styles(self):
|
335 |
+
st.markdown("""
|
336 |
+
<style>
|
337 |
+
:root {
|
338 |
+
--primary: #2ecc71;
|
339 |
+
--secondary: #3498db;
|
340 |
+
--background: #0a0a0a;
|
341 |
+
--text: #ecf0f1;
|
342 |
+
}
|
343 |
+
|
344 |
+
.stApp {
|
345 |
+
background: var(--background);
|
346 |
+
color: var(--text);
|
347 |
+
font-family: 'Roboto', sans-serif;
|
348 |
+
}
|
349 |
+
|
350 |
+
.stTextArea textarea {
|
351 |
+
background: #1a1a1a !important;
|
352 |
+
color: var(--text) !important;
|
353 |
+
border: 2px solid var(--secondary);
|
354 |
+
border-radius: 8px;
|
355 |
+
padding: 1rem;
|
356 |
+
}
|
357 |
+
|
358 |
+
.stButton>button {
|
359 |
+
background: linear-gradient(135deg, var(--primary), var(--secondary));
|
360 |
+
border: none;
|
361 |
+
border-radius: 8px;
|
362 |
+
padding: 1rem 2rem;
|
363 |
+
transition: all 0.3s;
|
364 |
+
}
|
365 |
+
|
366 |
+
.stButton>button:hover {
|
367 |
+
transform: translateY(-2px);
|
368 |
+
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
|
369 |
+
}
|
370 |
|
371 |
+
.stExpander {
|
372 |
+
background: #1a1a1a;
|
373 |
+
border: 1px solid #2a2a2a;
|
374 |
+
border-radius: 8px;
|
375 |
+
margin: 1rem 0;
|
376 |
+
}
|
377 |
+
</style>
|
378 |
+
""", unsafe_allow_html=True)
|
379 |
+
|
380 |
+
def _build_sidebar(self):
|
381 |
+
with st.sidebar:
|
382 |
+
st.title("π Research Database")
|
383 |
+
st.subheader("Technical Papers")
|
384 |
+
for title, short in ResearchConfig.DOCUMENT_MAP.items():
|
385 |
+
with st.expander(short):
|
386 |
+
st.markdown(f"```\n{title}\n```")
|
387 |
|
388 |
+
st.subheader("Analysis Metrics")
|
389 |
+
st.metric("Vector Collections", 2)
|
390 |
+
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
391 |
+
|
392 |
+
def _build_main_interface(self):
|
393 |
+
st.title("π§ NeuroResearch AI")
|
394 |
+
query = st.text_area("Research Query:", height=200,
|
395 |
+
placeholder="Enter technical research question...")
|
396 |
+
|
397 |
+
if st.button("Execute Analysis", type="primary"):
|
398 |
+
self._execute_analysis(query)
|
399 |
+
|
400 |
+
def _execute_analysis(self, query: str):
|
401 |
+
try:
|
402 |
+
with st.spinner("Initializing Quantum Analysis..."):
|
403 |
+
results = self.workflow.app.stream(
|
404 |
+
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
|
405 |
+
)
|
406 |
+
|
407 |
+
for event in results:
|
408 |
+
self._render_event(event)
|
409 |
+
|
410 |
+
st.success("β
Analysis Completed Successfully")
|
411 |
+
except Exception as e:
|
412 |
+
st.error(f"""**Analysis Failed**
|
413 |
+
{str(e)}
|
414 |
+
Potential issues:
|
415 |
+
- Complex query structure
|
416 |
+
- Document correlation failure
|
417 |
+
- Temporal processing constraints""")
|
418 |
+
|
419 |
+
def _render_event(self, event: Dict):
|
420 |
+
if 'ingest' in event:
|
421 |
+
with st.container():
|
422 |
+
st.success("β
Query Ingested")
|
423 |
+
|
424 |
+
elif 'retrieve' in event:
|
425 |
+
with st.container():
|
426 |
+
docs = event['retrieve']['context']['documents']
|
427 |
+
st.info(f"π Retrieved {len(docs)} documents")
|
428 |
+
with st.expander("View Retrieved Documents", expanded=False):
|
429 |
+
for i, doc in enumerate(docs, 1):
|
430 |
+
st.markdown(f"**Document {i}**")
|
431 |
+
st.code(doc.page_content, language='text')
|
432 |
|
433 |
+
elif 'analyze' in event:
|
434 |
+
with st.container():
|
435 |
+
content = event['analyze']['messages'][0].content
|
436 |
+
with st.expander("Technical Analysis Report", expanded=True):
|
437 |
+
st.markdown(content)
|
438 |
+
|
439 |
+
elif 'validate' in event:
|
440 |
+
with st.container():
|
441 |
+
content = event['validate']['messages'][0].content
|
442 |
+
if "VALID" in content:
|
443 |
+
st.success("β
Validation Passed")
|
444 |
+
with st.expander("View Validated Analysis", expanded=True):
|
445 |
+
st.markdown(content.split("Validation:")[0])
|
446 |
+
else:
|
447 |
+
st.warning("β οΈ Validation Issues Detected")
|
448 |
+
with st.expander("View Validation Details", expanded=True):
|
449 |
+
st.markdown(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
if __name__ == "__main__":
|
452 |
+
ResearchInterface()
|