mgbam commited on
Commit
5f3f5da
·
verified ·
1 Parent(s): 9bbda21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -7,7 +7,7 @@ from langchain_openai import OpenAIEmbeddings
7
  from langchain_community.vectorstores import Chroma
8
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
9
  from langchain.text_splitter import RecursiveCharacterTextSplitter
10
- from langgraph.graph import END, StateGraph, START
11
  from langgraph.prebuilt import ToolNode
12
  from langgraph.graph.message import add_messages
13
  from typing_extensions import TypedDict, Annotated
@@ -18,6 +18,9 @@ import streamlit as st
18
  import requests
19
  from langchain.tools.retriever import create_retriever_tool
20
 
 
 
 
21
  # ------------------------------
22
  # Dummy Data: Research & Development Texts
23
  # ------------------------------
@@ -45,8 +48,7 @@ development_docs = splitter.create_documents(development_texts)
45
  # ------------------------------
46
  embeddings = OpenAIEmbeddings(
47
  model="text-embedding-3-large",
48
- # You can uncomment and set dimensions if needed:
49
- # dimensions=1024
50
  )
51
  research_vectorstore = Chroma.from_documents(
52
  documents=research_docs,
 
7
  from langchain_community.vectorstores import Chroma
8
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
9
  from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+ from langgraph.graph import END, StateGraph # Removed START import
11
  from langgraph.prebuilt import ToolNode
12
  from langgraph.graph.message import add_messages
13
  from typing_extensions import TypedDict, Annotated
 
18
  import requests
19
  from langchain.tools.retriever import create_retriever_tool
20
 
21
+ # Define our own START constant
22
+ START = "START"
23
+
24
  # ------------------------------
25
  # Dummy Data: Research & Development Texts
26
  # ------------------------------
 
48
  # ------------------------------
49
  embeddings = OpenAIEmbeddings(
50
  model="text-embedding-3-large",
51
+ # dimensions=1024 # Uncomment if needed
 
52
  )
53
  research_vectorstore = Chroma.from_documents(
54
  documents=research_docs,