Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,39 @@
|
|
1 |
-
#
|
2 |
-
# Imports &
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain_core.messages import HumanMessage, AIMessage,
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langgraph.graph import END, StateGraph
|
|
|
|
|
9 |
from typing_extensions import TypedDict, Annotated
|
10 |
from typing import Sequence, Dict, List, Optional, Any
|
11 |
import chromadb
|
12 |
import os
|
13 |
-
import streamlit as st
|
14 |
import requests
|
15 |
import hashlib
|
16 |
-
import json
|
17 |
import time
|
18 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
19 |
from datetime import datetime
|
20 |
-
from pydantic import BaseModel, ValidationError
|
21 |
-
import traceback
|
22 |
|
23 |
-
#
|
24 |
-
#
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class ResearchConfig:
|
27 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
28 |
CHROMA_PATH = "chroma_db"
|
@@ -30,171 +41,139 @@ class ResearchConfig:
|
|
30 |
CHUNK_OVERLAP = 64
|
31 |
MAX_CONCURRENT_REQUESTS = 5
|
32 |
EMBEDDING_DIMENSIONS = 1536
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
{context}
|
35 |
|
36 |
Respond with:
|
37 |
-
1. Key Technical
|
38 |
-
2.
|
39 |
-
3.
|
40 |
-
4.
|
41 |
-
5.
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
$$\\mathcal{L}_{total} = \\alpha\\mathcal{L}_{CE} + \\beta\\mathcal{L}_{SSIM}$$""",
|
60 |
-
"metadata": {
|
61 |
-
"year": 2024,
|
62 |
-
"domain": "computer_vision",
|
63 |
-
"citations": 142
|
64 |
-
}
|
65 |
-
},
|
66 |
-
"Quantum ML Advances": {
|
67 |
-
"content": """## Quantum Machine Learning Breakthroughs
|
68 |
-
**Authors**: Quantum AI Lab
|
69 |
-
|
70 |
-
### Achievements:
|
71 |
-
- Quantum-enhanced SGD (40% faster convergence)
|
72 |
-
- 5-qubit QNN achieving 98% accuracy
|
73 |
-
- Hybrid quantum-classical GANs
|
74 |
-
|
75 |
-
$$\\mathcal{H} = -\\sum_{i<j} J_{ij}\\sigma_i^z\\sigma_j^z - \\Gamma\\sum_i\\sigma_i^x$$""",
|
76 |
-
"metadata": {
|
77 |
-
"year": 2023,
|
78 |
-
"domain": "quantum_ml",
|
79 |
-
"citations": 89
|
80 |
-
}
|
81 |
-
}
|
82 |
-
}
|
83 |
-
|
84 |
-
class DocumentSchema(BaseModel):
|
85 |
-
content: str
|
86 |
-
metadata: dict
|
87 |
-
doc_id: str
|
88 |
-
|
89 |
-
# ------------------------------
|
90 |
-
# State Management
|
91 |
-
# ------------------------------
|
92 |
-
class ResearchState(TypedDict):
|
93 |
-
messages: Annotated[List[BaseMessage], add_messages]
|
94 |
-
context: Annotated[Dict[str, Any], "research_context"]
|
95 |
-
metadata: Annotated[Dict[str, str], "system_metadata"]
|
96 |
-
|
97 |
-
# ------------------------------
|
98 |
-
# Document Processing
|
99 |
-
# ------------------------------
|
100 |
-
class DocumentManager:
|
101 |
def __init__(self):
|
102 |
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
|
103 |
self.embeddings = OpenAIEmbeddings(
|
104 |
model="text-embedding-3-large",
|
105 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
106 |
)
|
107 |
-
|
108 |
-
def initialize_collections(self):
|
109 |
-
try:
|
110 |
-
self.research_col = self._create_collection("research")
|
111 |
-
self.dev_col = self._create_collection("development")
|
112 |
-
except Exception as e:
|
113 |
-
st.error(f"Collection initialization failed: {str(e)}")
|
114 |
-
traceback.print_exc()
|
115 |
-
|
116 |
-
def _create_collection(self, name: str) -> Chroma:
|
117 |
-
documents, metadatas, ids = [], [], []
|
118 |
|
119 |
-
|
120 |
-
try:
|
121 |
-
doc = DocumentSchema(
|
122 |
-
content=data["content"],
|
123 |
-
metadata=data["metadata"],
|
124 |
-
doc_id=hashlib.sha256(title.encode()).hexdigest()[:16]
|
125 |
-
)
|
126 |
-
documents.append(doc.content)
|
127 |
-
metadatas.append(doc.metadata)
|
128 |
-
ids.append(doc.doc_id)
|
129 |
-
except ValidationError as e:
|
130 |
-
st.error(f"Invalid document format: {title} - {str(e)}")
|
131 |
-
continue
|
132 |
-
|
133 |
splitter = RecursiveCharacterTextSplitter(
|
134 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
135 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
136 |
-
separators=["\n
|
137 |
)
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
#
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
class ResearchRetriever:
|
155 |
def __init__(self):
|
156 |
-
self.
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
def retrieve(self, query: str, domain: str) -> List[
|
|
|
160 |
try:
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
results = collection.as_retriever(
|
166 |
-
search_type="mmr",
|
167 |
-
search_kwargs={'k': 4, 'fetch_k': 20}
|
168 |
-
).invoke(query)
|
169 |
-
|
170 |
-
return [DocumentSchema(
|
171 |
-
content=doc.page_content,
|
172 |
-
metadata=doc.metadata,
|
173 |
-
doc_id=doc.metadata.get("doc_id", "")
|
174 |
-
) for doc in results if doc.page_content]
|
175 |
-
|
176 |
-
except Exception as e:
|
177 |
-
st.error(f"Retrieval failure: {str(e)}")
|
178 |
-
traceback.print_exc()
|
179 |
return []
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
#
|
184 |
-
|
|
|
|
|
185 |
def __init__(self):
|
186 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
187 |
-
self.
|
188 |
-
|
189 |
-
def
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
headers = {
|
195 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
196 |
-
"
|
197 |
-
"
|
198 |
}
|
199 |
|
200 |
try:
|
@@ -203,252 +182,293 @@ class AnalysisEngine:
|
|
203 |
headers=headers,
|
204 |
json={
|
205 |
"model": "deepseek-chat",
|
206 |
-
"messages": [{
|
|
|
|
|
|
|
207 |
"temperature": 0.7,
|
208 |
-
"max_tokens":
|
|
|
209 |
},
|
210 |
-
timeout=
|
211 |
)
|
212 |
response.raise_for_status()
|
213 |
return response.json()
|
214 |
-
except
|
215 |
-
return {"error": str(e)
|
216 |
-
|
217 |
-
def
|
|
|
218 |
valid = [r for r in results if "error" not in r]
|
219 |
if not valid:
|
220 |
-
return {"error": "All
|
221 |
-
|
222 |
-
best = max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', ''))
|
223 |
-
return best
|
224 |
|
225 |
-
#
|
226 |
-
# Workflow
|
227 |
-
#
|
228 |
class ResearchWorkflow:
|
229 |
def __init__(self):
|
230 |
-
self.
|
231 |
-
self.
|
232 |
-
self.
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
self.workflow.add_node("ingest", self.
|
237 |
-
self.workflow.add_node("retrieve", self.
|
238 |
-
self.workflow.add_node("analyze", self.
|
239 |
-
self.workflow.add_node("validate", self.
|
240 |
-
self.workflow.add_node("refine", self.
|
241 |
-
|
|
|
242 |
self.workflow.set_entry_point("ingest")
|
243 |
self.workflow.add_edge("ingest", "retrieve")
|
244 |
self.workflow.add_edge("retrieve", "analyze")
|
245 |
self.workflow.add_conditional_edges(
|
246 |
"analyze",
|
247 |
-
self.
|
248 |
{"valid": "validate", "invalid": "refine"}
|
249 |
)
|
250 |
self.workflow.add_edge("validate", END)
|
251 |
self.workflow.add_edge("refine", "retrieve")
|
252 |
|
253 |
-
|
|
|
|
|
|
|
|
|
254 |
try:
|
255 |
-
query =
|
256 |
-
if isinstance(msg, HumanMessage))
|
257 |
return {
|
258 |
-
"messages": [AIMessage(content="Query ingested")],
|
259 |
-
"context": {
|
260 |
-
|
261 |
-
"documents": [],
|
262 |
-
"errors": []
|
263 |
-
},
|
264 |
-
"metadata": {
|
265 |
-
"session_id": hashlib.sha256(str(time.time()).encode()).hexdigest()[:8],
|
266 |
-
"timestamp": datetime.now().isoformat()
|
267 |
-
}
|
268 |
}
|
269 |
except Exception as e:
|
270 |
-
return self.
|
271 |
|
272 |
-
def
|
|
|
273 |
try:
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
275 |
return {
|
276 |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
277 |
"context": {
|
278 |
-
**state["context"],
|
279 |
"documents": docs,
|
280 |
"retrieval_time": time.time()
|
281 |
-
}
|
282 |
-
"metadata": state["metadata"]
|
283 |
}
|
284 |
except Exception as e:
|
285 |
-
return self.
|
286 |
|
287 |
-
def
|
288 |
-
|
289 |
-
if not docs:
|
290 |
-
return self._handle_error("No documents for analysis", state)
|
291 |
-
|
292 |
try:
|
293 |
-
|
294 |
-
|
295 |
-
result = self.engine.analyze(prompt)
|
296 |
-
|
297 |
-
if "error" in result:
|
298 |
-
raise RuntimeError(result["error"])
|
299 |
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
-
if
|
303 |
-
|
304 |
|
305 |
return {
|
306 |
-
"messages": [AIMessage(content=content)],
|
307 |
-
"context":
|
308 |
-
"metadata": state["metadata"]
|
309 |
}
|
310 |
except Exception as e:
|
311 |
-
return self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
-
def
|
314 |
-
|
315 |
-
|
|
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
-
def
|
322 |
-
|
323 |
-
|
324 |
-
return "valid" if
|
325 |
|
326 |
-
def
|
|
|
|
|
327 |
return {
|
328 |
-
"messages": [AIMessage(content=f"
|
329 |
-
"context": {
|
330 |
-
|
331 |
-
"errors": state["context"]["errors"] + [message]
|
332 |
-
},
|
333 |
-
"metadata": state["metadata"]
|
334 |
}
|
335 |
|
336 |
-
#
|
337 |
-
#
|
338 |
-
#
|
339 |
class ResearchInterface:
|
340 |
def __init__(self):
|
341 |
-
self.workflow = ResearchWorkflow()
|
342 |
-
|
343 |
-
|
344 |
-
def _setup_interface(self):
|
345 |
-
st.set_page_config(
|
346 |
-
page_title="Research Assistant",
|
347 |
-
layout="wide",
|
348 |
-
initial_sidebar_state="expanded"
|
349 |
-
)
|
350 |
-
self._apply_styles()
|
351 |
self._build_sidebar()
|
352 |
-
self.
|
353 |
|
354 |
-
def
|
|
|
355 |
st.markdown("""
|
356 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
.stApp {
|
358 |
-
background:
|
359 |
-
color:
|
|
|
360 |
}
|
|
|
361 |
.stTextArea textarea {
|
362 |
-
background: #
|
363 |
-
color:
|
|
|
|
|
|
|
364 |
}
|
|
|
365 |
.stButton>button {
|
366 |
-
background:
|
367 |
-
border:
|
|
|
|
|
|
|
368 |
}
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
margin: 1rem 0;
|
374 |
}
|
375 |
</style>
|
376 |
""", unsafe_allow_html=True)
|
377 |
|
378 |
def _build_sidebar(self):
|
|
|
379 |
with st.sidebar:
|
380 |
-
st.title("π
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
|
389 |
-
if st.button("
|
390 |
-
self.
|
391 |
|
392 |
-
def
|
|
|
393 |
try:
|
394 |
-
with st.spinner("
|
395 |
-
|
396 |
-
"messages": [HumanMessage(content=query)],
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
},
|
402 |
-
"metadata": {}
|
403 |
-
}
|
404 |
-
|
405 |
-
for event in self.workflow.stream(state):
|
406 |
-
self._display_progress(event)
|
407 |
-
|
408 |
-
final_state = self.workflow.invoke(state)
|
409 |
-
self._show_results(final_state)
|
410 |
-
|
411 |
except Exception as e:
|
412 |
st.error(f"""**Analysis Failed**
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
def
|
420 |
-
|
421 |
-
|
422 |
-
st.
|
423 |
-
|
424 |
-
|
425 |
-
with
|
426 |
-
|
427 |
-
|
428 |
-
st.
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
|
|
|
|
|
|
|
|
|
|
439 |
else:
|
440 |
-
st.
|
441 |
-
|
442 |
-
|
443 |
-
if state["context"].get("errors"):
|
444 |
-
st.error("Analysis completed with errors")
|
445 |
-
with st.expander("Error Details"):
|
446 |
-
for error in state["context"]["errors"]:
|
447 |
-
st.markdown(f"- {error}")
|
448 |
-
else:
|
449 |
-
st.success("Analysis completed successfully β
")
|
450 |
-
with st.expander("Full Report"):
|
451 |
-
st.markdown(state["messages"][-1].content)
|
452 |
|
|
|
|
|
|
|
453 |
if __name__ == "__main__":
|
454 |
-
ResearchInterface()
|
|
|
1 |
+
# -----------------------------------------------------
|
2 |
+
# Imports & Initial Configuration
|
3 |
+
# -----------------------------------------------------
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
# IMPORTANT: Must be the first Streamlit command
|
7 |
+
st.set_page_config(page_title="NeuroResearch AI", layout="wide", initial_sidebar_state="expanded")
|
8 |
+
|
9 |
from langchain_openai import OpenAIEmbeddings
|
10 |
from langchain_community.vectorstores import Chroma
|
11 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langgraph.graph import END, StateGraph
|
14 |
+
from langgraph.prebuilt import ToolNode
|
15 |
+
from langgraph.graph.message import add_messages
|
16 |
from typing_extensions import TypedDict, Annotated
|
17 |
from typing import Sequence, Dict, List, Optional, Any
|
18 |
import chromadb
|
19 |
import os
|
|
|
20 |
import requests
|
21 |
import hashlib
|
|
|
22 |
import time
|
23 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
24 |
from datetime import datetime
|
|
|
|
|
25 |
|
26 |
+
# -----------------------------------------------------
|
27 |
+
# State Schema Definition
|
28 |
+
# -----------------------------------------------------
|
29 |
+
class AgentState(TypedDict):
|
30 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
31 |
+
context: Dict[str, Any]
|
32 |
+
metadata: Dict[str, Any]
|
33 |
+
|
34 |
+
# -----------------------------------------------------
|
35 |
+
# Configuration
|
36 |
+
# -----------------------------------------------------
|
37 |
class ResearchConfig:
|
38 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
39 |
CHROMA_PATH = "chroma_db"
|
|
|
41 |
CHUNK_OVERLAP = 64
|
42 |
MAX_CONCURRENT_REQUESTS = 5
|
43 |
EMBEDDING_DIMENSIONS = 1536
|
44 |
+
DOCUMENT_MAP = {
|
45 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%":
|
46 |
+
"CV-Transformer Hybrid Architecture",
|
47 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing":
|
48 |
+
"Transformer Architecture Analysis",
|
49 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing":
|
50 |
+
"Quantum ML Frontiers"
|
51 |
+
}
|
52 |
+
ANALYSIS_TEMPLATE = """Analyze these technical documents with scientific rigor:
|
53 |
{context}
|
54 |
|
55 |
Respond with:
|
56 |
+
1. Key Technical Contributions (bullet points)
|
57 |
+
2. Novel Methodologies
|
58 |
+
3. Empirical Results (with metrics)
|
59 |
+
4. Potential Applications
|
60 |
+
5. Limitations & Future Directions
|
61 |
+
|
62 |
+
Format: Markdown with LaTeX mathematical notation where applicable
|
63 |
+
"""
|
64 |
+
|
65 |
+
# Validate API key configuration
|
66 |
+
if not ResearchConfig.DEEPSEEK_API_KEY:
|
67 |
+
st.error("""**Research Portal Configuration Required**
|
68 |
+
1. Obtain DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
|
69 |
+
2. Configure secret: `DEEPSEEK_API_KEY` in Space settings
|
70 |
+
3. Rebuild deployment""")
|
71 |
+
st.stop()
|
72 |
+
|
73 |
+
# -----------------------------------------------------
|
74 |
+
# Quantum Document Processing
|
75 |
+
# -----------------------------------------------------
|
76 |
+
class QuantumDocumentManager:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def __init__(self):
|
78 |
self.client = chromadb.PersistentClient(path=ResearchConfig.CHROMA_PATH)
|
79 |
self.embeddings = OpenAIEmbeddings(
|
80 |
model="text-embedding-3-large",
|
81 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def create_collection(self, documents: List[str], collection_name: str) -> Chroma:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
splitter = RecursiveCharacterTextSplitter(
|
86 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
87 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
88 |
+
separators=["\n\n", "\n", "|||"]
|
89 |
)
|
90 |
+
docs = splitter.create_documents(documents)
|
91 |
+
# Debug lines about chunk creation removed
|
92 |
+
return Chroma.from_documents(
|
93 |
+
documents=docs,
|
94 |
+
embedding=self.embeddings,
|
95 |
+
client=self.client,
|
96 |
+
collection_name=collection_name,
|
97 |
+
ids=[self._document_id(doc.page_content) for doc in docs]
|
98 |
+
)
|
99 |
+
|
100 |
+
def _document_id(self, content: str) -> str:
|
101 |
+
"""Create a unique ID for each document chunk."""
|
102 |
+
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
103 |
+
|
104 |
+
# Initialize document collections
|
105 |
+
qdm = QuantumDocumentManager()
|
106 |
+
research_docs = qdm.create_collection([
|
107 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
108 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
109 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
110 |
+
], "research")
|
111 |
+
|
112 |
+
development_docs = qdm.create_collection([
|
113 |
+
"Project A: UI Design Completed, API Integration in Progress",
|
114 |
+
"Project B: Testing New Feature X, Bug Fixes Needed",
|
115 |
+
"Product Y: In the Performance Optimization Stage Before Release"
|
116 |
+
], "development")
|
117 |
+
|
118 |
+
# -----------------------------------------------------
|
119 |
+
# Advanced Retrieval System
|
120 |
+
# -----------------------------------------------------
|
121 |
class ResearchRetriever:
|
122 |
def __init__(self):
|
123 |
+
self.retrievers = {
|
124 |
+
"research": research_docs.as_retriever(
|
125 |
+
search_type="mmr",
|
126 |
+
search_kwargs={
|
127 |
+
'k': 4,
|
128 |
+
'fetch_k': 20,
|
129 |
+
'lambda_mult': 0.85
|
130 |
+
}
|
131 |
+
),
|
132 |
+
"development": development_docs.as_retriever(
|
133 |
+
search_type="similarity",
|
134 |
+
search_kwargs={'k': 3}
|
135 |
+
)
|
136 |
+
}
|
137 |
|
138 |
+
def retrieve(self, query: str, domain: str) -> List[Any]:
|
139 |
+
"""Retrieve documents from the specified domain."""
|
140 |
try:
|
141 |
+
return self.retrievers[domain].invoke(query)
|
142 |
+
except KeyError:
|
143 |
+
st.error(f"[ERROR] Retrieval domain '{domain}' not found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
return []
|
145 |
|
146 |
+
retriever = ResearchRetriever()
|
147 |
+
|
148 |
+
# -----------------------------------------------------
|
149 |
+
# Cognitive Processing Unit
|
150 |
+
# -----------------------------------------------------
|
151 |
+
class CognitiveProcessor:
|
152 |
def __init__(self):
|
153 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
154 |
+
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
|
155 |
+
|
156 |
+
def process_query(self, prompt: str) -> Dict:
|
157 |
+
"""Send the prompt to the DeepSeek API using triple redundancy for robustness."""
|
158 |
+
futures = []
|
159 |
+
for _ in range(3):
|
160 |
+
futures.append(self.executor.submit(self._execute_api_request, prompt))
|
161 |
+
|
162 |
+
results = []
|
163 |
+
for future in as_completed(futures):
|
164 |
+
try:
|
165 |
+
results.append(future.result())
|
166 |
+
except Exception as e:
|
167 |
+
st.error(f"Processing Error: {str(e)}")
|
168 |
+
|
169 |
+
return self._consensus_check(results)
|
170 |
+
|
171 |
+
def _execute_api_request(self, prompt: str) -> Dict:
|
172 |
+
"""Make a single request to the DeepSeek API."""
|
173 |
headers = {
|
174 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
175 |
+
"Content-Type": "application/json",
|
176 |
+
"X-Research-Session": self.session_id
|
177 |
}
|
178 |
|
179 |
try:
|
|
|
182 |
headers=headers,
|
183 |
json={
|
184 |
"model": "deepseek-chat",
|
185 |
+
"messages": [{
|
186 |
+
"role": "user",
|
187 |
+
"content": f"Respond as Senior AI Researcher:\n{prompt}"
|
188 |
+
}],
|
189 |
"temperature": 0.7,
|
190 |
+
"max_tokens": 1500,
|
191 |
+
"top_p": 0.9
|
192 |
},
|
193 |
+
timeout=45
|
194 |
)
|
195 |
response.raise_for_status()
|
196 |
return response.json()
|
197 |
+
except requests.exceptions.RequestException as e:
|
198 |
+
return {"error": str(e)}
|
199 |
+
|
200 |
+
def _consensus_check(self, results: List[Dict]) -> Dict:
|
201 |
+
"""Pick the best result by comparing content length among successful responses."""
|
202 |
valid = [r for r in results if "error" not in r]
|
203 |
if not valid:
|
204 |
+
return {"error": "All API requests failed"}
|
205 |
+
return max(valid, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
|
|
|
|
|
206 |
|
207 |
+
# -----------------------------------------------------
|
208 |
+
# Research Workflow Engine
|
209 |
+
# -----------------------------------------------------
|
210 |
class ResearchWorkflow:
|
211 |
def __init__(self):
|
212 |
+
self.processor = CognitiveProcessor()
|
213 |
+
self.workflow = StateGraph(AgentState)
|
214 |
+
self._build_workflow()
|
215 |
+
|
216 |
+
def _build_workflow(self):
|
217 |
+
# Register nodes in the state graph
|
218 |
+
self.workflow.add_node("ingest", self.ingest_query)
|
219 |
+
self.workflow.add_node("retrieve", self.retrieve_documents)
|
220 |
+
self.workflow.add_node("analyze", self.analyze_content)
|
221 |
+
self.workflow.add_node("validate", self.validate_output)
|
222 |
+
self.workflow.add_node("refine", self.refine_results)
|
223 |
+
|
224 |
+
# Define workflow transitions
|
225 |
self.workflow.set_entry_point("ingest")
|
226 |
self.workflow.add_edge("ingest", "retrieve")
|
227 |
self.workflow.add_edge("retrieve", "analyze")
|
228 |
self.workflow.add_conditional_edges(
|
229 |
"analyze",
|
230 |
+
self._quality_check,
|
231 |
{"valid": "validate", "invalid": "refine"}
|
232 |
)
|
233 |
self.workflow.add_edge("validate", END)
|
234 |
self.workflow.add_edge("refine", "retrieve")
|
235 |
|
236 |
+
# Compile the final state machine
|
237 |
+
self.app = self.workflow.compile()
|
238 |
+
|
239 |
+
def ingest_query(self, state: AgentState) -> Dict:
|
240 |
+
"""Extract the user query and store it in the state."""
|
241 |
try:
|
242 |
+
query = state["messages"][-1].content
|
|
|
243 |
return {
|
244 |
+
"messages": [AIMessage(content="Query ingested successfully")],
|
245 |
+
"context": {"raw_query": query},
|
246 |
+
"metadata": {"timestamp": datetime.now().isoformat()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
}
|
248 |
except Exception as e:
|
249 |
+
return self._error_state(f"Ingestion Error: {str(e)}")
|
250 |
|
251 |
+
def retrieve_documents(self, state: AgentState) -> Dict:
|
252 |
+
"""Retrieve relevant documents from the 'research' domain."""
|
253 |
try:
|
254 |
+
# Fallback check for 'raw_query'
|
255 |
+
if "raw_query" not in state["context"]:
|
256 |
+
return self._error_state("No 'raw_query' found in context. Make sure the ingest step has run.")
|
257 |
+
|
258 |
+
query = state["context"]["raw_query"]
|
259 |
+
docs = retriever.retrieve(query, "research")
|
260 |
return {
|
261 |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
262 |
"context": {
|
|
|
263 |
"documents": docs,
|
264 |
"retrieval_time": time.time()
|
265 |
+
}
|
|
|
266 |
}
|
267 |
except Exception as e:
|
268 |
+
return self._error_state(f"Retrieval Error: {str(e)}")
|
269 |
|
270 |
+
def analyze_content(self, state: AgentState) -> Dict:
|
271 |
+
"""Concatenate document contents and analyze them using the CognitiveProcessor."""
|
|
|
|
|
|
|
272 |
try:
|
273 |
+
if "documents" not in state["context"] or not state["context"]["documents"]:
|
274 |
+
return self._error_state("No documents retrieved; please check your query or retrieval process.")
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
docs = "\n\n".join([
|
277 |
+
d.page_content for d in state["context"]["documents"]
|
278 |
+
if hasattr(d, "page_content") and d.page_content
|
279 |
+
])
|
280 |
+
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs)
|
281 |
+
response = self.processor.process_query(prompt)
|
282 |
|
283 |
+
if "error" in response:
|
284 |
+
return self._error_state(response["error"])
|
285 |
|
286 |
return {
|
287 |
+
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
|
288 |
+
"context": {"analysis": response}
|
|
|
289 |
}
|
290 |
except Exception as e:
|
291 |
+
return self._error_state(f"Analysis Error: {str(e)}")
|
292 |
+
|
293 |
+
def validate_output(self, state: AgentState) -> Dict:
|
294 |
+
"""Validate the technical correctness of the analysis output."""
|
295 |
+
analysis = state["messages"][-1].content
|
296 |
+
validation_prompt = f"""Validate research analysis:
|
297 |
+
{analysis}
|
298 |
+
|
299 |
+
Check for:
|
300 |
+
1. Technical accuracy
|
301 |
+
2. Citation support
|
302 |
+
3. Logical consistency
|
303 |
+
4. Methodological soundness
|
304 |
+
|
305 |
+
Respond with 'VALID' or 'INVALID'"""
|
306 |
+
|
307 |
+
response = self.processor.process_query(validation_prompt)
|
308 |
+
return {
|
309 |
+
"messages": [AIMessage(content=analysis + f"\n\nValidation: {response.get('choices', [{}])[0].get('message', {}).get('content', '')}")]
|
310 |
+
}
|
311 |
|
312 |
+
def refine_results(self, state: AgentState) -> Dict:
|
313 |
+
"""Refine the analysis based on the validation feedback."""
|
314 |
+
refinement_prompt = f"""Refine this analysis:
|
315 |
+
{state["messages"][-1].content}
|
316 |
|
317 |
+
Improve:
|
318 |
+
1. Technical precision
|
319 |
+
2. Empirical grounding
|
320 |
+
3. Theoretical coherence"""
|
321 |
+
|
322 |
+
response = self.processor.process_query(refinement_prompt)
|
323 |
+
return {
|
324 |
+
"messages": [AIMessage(content=response.get('choices', [{}])[0].get('message', {}).get('content', ''))],
|
325 |
+
"context": state["context"]
|
326 |
+
}
|
327 |
|
328 |
+
def _quality_check(self, state: AgentState) -> str:
|
329 |
+
"""Check if the validation step indicates a 'VALID' or 'INVALID' output."""
|
330 |
+
content = state["messages"][-1].content
|
331 |
+
return "valid" if "VALID" in content else "invalid"
|
332 |
|
333 |
+
def _error_state(self, message: str) -> Dict:
|
334 |
+
"""Return an error message and mark the state as erroneous."""
|
335 |
+
st.error(f"[ERROR] {message}")
|
336 |
return {
|
337 |
+
"messages": [AIMessage(content=f"β {message}")],
|
338 |
+
"context": {"error": True},
|
339 |
+
"metadata": {"status": "error"}
|
|
|
|
|
|
|
340 |
}
|
341 |
|
342 |
+
# -----------------------------------------------------
|
343 |
+
# Research Interface
|
344 |
+
# -----------------------------------------------------
|
345 |
class ResearchInterface:
|
346 |
def __init__(self):
|
347 |
+
self.workflow = ResearchWorkflow()
|
348 |
+
# Page config already set at the top.
|
349 |
+
self._inject_styles()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
self._build_sidebar()
|
351 |
+
self._build_main_interface()
|
352 |
|
353 |
+
def _inject_styles(self):
|
354 |
+
"""Inject custom CSS for a sleek interface."""
|
355 |
st.markdown("""
|
356 |
<style>
|
357 |
+
:root {
|
358 |
+
--primary: #2ecc71;
|
359 |
+
--secondary: #3498db;
|
360 |
+
--background: #0a0a0a;
|
361 |
+
--text: #ecf0f1;
|
362 |
+
}
|
363 |
+
|
364 |
.stApp {
|
365 |
+
background: var(--background);
|
366 |
+
color: var(--text);
|
367 |
+
font-family: 'Roboto', sans-serif;
|
368 |
}
|
369 |
+
|
370 |
.stTextArea textarea {
|
371 |
+
background: #1a1a1a !important;
|
372 |
+
color: var(--text) !important;
|
373 |
+
border: 2px solid var(--secondary);
|
374 |
+
border-radius: 8px;
|
375 |
+
padding: 1rem;
|
376 |
}
|
377 |
+
|
378 |
.stButton>button {
|
379 |
+
background: linear-gradient(135deg, var(--primary), var(--secondary));
|
380 |
+
border: none;
|
381 |
+
border-radius: 8px;
|
382 |
+
padding: 1rem 2rem;
|
383 |
+
transition: all 0.3s;
|
384 |
}
|
385 |
+
|
386 |
+
.stButton>button:hover {
|
387 |
+
transform: translateY(-2px);
|
388 |
+
box-shadow: 0 4px 12px rgba(46, 204, 113, 0.3);
|
389 |
+
}
|
390 |
+
|
391 |
+
.stExpander {
|
392 |
+
background: #1a1a1a;
|
393 |
+
border: 1px solid #2a2a2a;
|
394 |
+
border-radius: 8px;
|
395 |
margin: 1rem 0;
|
396 |
}
|
397 |
</style>
|
398 |
""", unsafe_allow_html=True)
|
399 |
|
400 |
def _build_sidebar(self):
|
401 |
+
"""Construct the left sidebar with document info and metrics."""
|
402 |
with st.sidebar:
|
403 |
+
st.title("π Research Database")
|
404 |
+
st.subheader("Technical Papers")
|
405 |
+
for title, short in ResearchConfig.DOCUMENT_MAP.items():
|
406 |
+
with st.expander(short):
|
407 |
+
st.markdown(f"```\n{title}\n```")
|
408 |
+
|
409 |
+
st.subheader("Analysis Metrics")
|
410 |
+
st.metric("Vector Collections", 2)
|
411 |
+
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
412 |
+
|
413 |
+
def _build_main_interface(self):
|
414 |
+
"""Construct the main interface for query input and result display."""
|
415 |
+
st.title("π§ NeuroResearch AI")
|
416 |
+
query = st.text_area("Research Query:", height=200,
|
417 |
+
placeholder="Enter technical research question...")
|
418 |
|
419 |
+
if st.button("Execute Analysis", type="primary"):
|
420 |
+
self._execute_analysis(query)
|
421 |
|
422 |
+
def _execute_analysis(self, query: str):
|
423 |
+
"""Execute the entire research workflow and render the results."""
|
424 |
try:
|
425 |
+
with st.spinner("Initializing Quantum Analysis..."):
|
426 |
+
results = self.workflow.app.stream(
|
427 |
+
{"messages": [HumanMessage(content=query)], "context": {}, "metadata": {}}
|
428 |
+
)
|
429 |
+
for event in results:
|
430 |
+
self._render_event(event)
|
431 |
+
st.success("β
Analysis Completed Successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
except Exception as e:
|
433 |
st.error(f"""**Analysis Failed**
|
434 |
+
{str(e)}
|
435 |
+
Potential issues:
|
436 |
+
- Complex query structure
|
437 |
+
- Document correlation failure
|
438 |
+
- Temporal processing constraints""")
|
439 |
+
|
440 |
+
def _render_event(self, event: Dict):
|
441 |
+
"""Render each node's output in the UI as it streams through the workflow."""
|
442 |
+
if 'ingest' in event:
|
443 |
+
with st.container():
|
444 |
+
st.success("β
Query Ingested")
|
445 |
+
elif 'retrieve' in event:
|
446 |
+
with st.container():
|
447 |
+
docs = event['retrieve']['context']['documents']
|
448 |
+
st.info(f"π Retrieved {len(docs)} documents")
|
449 |
+
with st.expander("View Retrieved Documents", expanded=False):
|
450 |
+
for i, doc in enumerate(docs, 1):
|
451 |
+
st.markdown(f"**Document {i}**")
|
452 |
+
st.code(doc.page_content, language='text')
|
453 |
+
elif 'analyze' in event:
|
454 |
+
with st.container():
|
455 |
+
content = event['analyze']['messages'][0].content
|
456 |
+
with st.expander("Technical Analysis Report", expanded=True):
|
457 |
+
st.markdown(content)
|
458 |
+
elif 'validate' in event:
|
459 |
+
with st.container():
|
460 |
+
content = event['validate']['messages'][0].content
|
461 |
+
if "VALID" in content:
|
462 |
+
st.success("β
Validation Passed")
|
463 |
+
with st.expander("View Validated Analysis", expanded=True):
|
464 |
+
st.markdown(content.split("Validation:")[0])
|
465 |
else:
|
466 |
+
st.warning("β οΈ Validation Issues Detected")
|
467 |
+
with st.expander("View Validation Details", expanded=True):
|
468 |
+
st.markdown(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
|
470 |
+
# -----------------------------------------------------
|
471 |
+
# Main Execution
|
472 |
+
# -----------------------------------------------------
|
473 |
if __name__ == "__main__":
|
474 |
+
ResearchInterface()
|