Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
# app.py
|
2 |
-
# Advanced
|
3 |
#
|
4 |
-
#
|
5 |
-
#
|
6 |
-
# a multi-agent chatbot capable of autonomous reasoning and action.
|
7 |
#
|
8 |
# To deploy:
|
9 |
-
# 1. Add your API
|
10 |
-
# 2.
|
11 |
-
# 3.
|
12 |
|
13 |
import os
|
14 |
import re
|
@@ -27,7 +26,7 @@ from langgraph.graph import END, StateGraph, START
|
|
27 |
from langgraph.prebuilt import ToolNode
|
28 |
from langgraph.graph.message import add_messages
|
29 |
|
30 |
-
# Configure logging
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
@@ -49,9 +48,7 @@ splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
|
49 |
research_docs = splitter.create_documents(research_texts)
|
50 |
development_docs = splitter.create_documents(development_texts)
|
51 |
|
52 |
-
embeddings = OpenAIEmbeddings(
|
53 |
-
model="text-embedding-3-large"
|
54 |
-
)
|
55 |
|
56 |
research_vectorstore = Chroma.from_documents(
|
57 |
documents=research_docs,
|
@@ -99,7 +96,7 @@ Otherwise, just answer directly.
|
|
99 |
"""
|
100 |
headers = {
|
101 |
"Accept": "application/json",
|
102 |
-
"Authorization": f"Bearer {os.environ.get('
|
103 |
"Content-Type": "application/json"
|
104 |
}
|
105 |
data = {
|
@@ -108,7 +105,6 @@ Otherwise, just answer directly.
|
|
108 |
"temperature": 0.7,
|
109 |
"max_tokens": 1024
|
110 |
}
|
111 |
-
|
112 |
response = requests.post(
|
113 |
"https://api.deepseek.com/v1/chat/completions",
|
114 |
headers=headers,
|
@@ -151,7 +147,7 @@ def generate(state: AgentState):
|
|
151 |
docs = last_message.content[last_message.content.find("Results: ["):]
|
152 |
headers = {
|
153 |
"Accept": "application/json",
|
154 |
-
"Authorization": f"Bearer {os.environ.get('
|
155 |
"Content-Type": "application/json"
|
156 |
}
|
157 |
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
@@ -184,7 +180,7 @@ def rewrite(state: AgentState):
|
|
184 |
original_question = state["messages"][0].content if state["messages"] else "N/A"
|
185 |
headers = {
|
186 |
"Accept": "application/json",
|
187 |
-
"Authorization": f"Bearer {os.environ.get('
|
188 |
"Content-Type": "application/json"
|
189 |
}
|
190 |
data = {
|
@@ -214,7 +210,7 @@ def custom_tools_condition(state: AgentState):
|
|
214 |
return "tools"
|
215 |
return END
|
216 |
|
217 |
-
# Build the workflow
|
218 |
workflow = StateGraph(AgentState)
|
219 |
workflow.add_node("agent", agent)
|
220 |
retrieve_node = ToolNode(tools)
|
|
|
1 |
# app.py
|
2 |
+
# Advanced AI R&D Assistant for Hugging Face Spaces
|
3 |
#
|
4 |
+
# This app leverages LangGraph, DeepSeek-R1 via text-based function calling, and Agentic RAG.
|
5 |
+
# API keys are securely loaded via environment variables.
|
|
|
6 |
#
|
7 |
# To deploy:
|
8 |
+
# 1. Add your API key to Hugging Face Space secrets with the key DEEP_SEEK_API.
|
9 |
+
# 2. Ensure your requirements.txt is properly configured.
|
10 |
+
# 3. Run the app with Streamlit.
|
11 |
|
12 |
import os
|
13 |
import re
|
|
|
26 |
from langgraph.prebuilt import ToolNode
|
27 |
from langgraph.graph.message import add_messages
|
28 |
|
29 |
+
# Configure logging
|
30 |
logging.basicConfig(level=logging.INFO)
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
|
|
48 |
research_docs = splitter.create_documents(research_texts)
|
49 |
development_docs = splitter.create_documents(development_texts)
|
50 |
|
51 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
|
|
|
|
52 |
|
53 |
research_vectorstore = Chroma.from_documents(
|
54 |
documents=research_docs,
|
|
|
96 |
"""
|
97 |
headers = {
|
98 |
"Accept": "application/json",
|
99 |
+
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
100 |
"Content-Type": "application/json"
|
101 |
}
|
102 |
data = {
|
|
|
105 |
"temperature": 0.7,
|
106 |
"max_tokens": 1024
|
107 |
}
|
|
|
108 |
response = requests.post(
|
109 |
"https://api.deepseek.com/v1/chat/completions",
|
110 |
headers=headers,
|
|
|
147 |
docs = last_message.content[last_message.content.find("Results: ["):]
|
148 |
headers = {
|
149 |
"Accept": "application/json",
|
150 |
+
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
151 |
"Content-Type": "application/json"
|
152 |
}
|
153 |
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
|
|
180 |
original_question = state["messages"][0].content if state["messages"] else "N/A"
|
181 |
headers = {
|
182 |
"Accept": "application/json",
|
183 |
+
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
184 |
"Content-Type": "application/json"
|
185 |
}
|
186 |
data = {
|
|
|
210 |
return "tools"
|
211 |
return END
|
212 |
|
213 |
+
# Build the workflow with LangGraph's StateGraph
|
214 |
workflow = StateGraph(AgentState)
|
215 |
workflow.add_node("agent", agent)
|
216 |
retrieve_node = ToolNode(tools)
|