mgbam commited on
Commit
8588a31
Β·
verified Β·
1 Parent(s): 505ed86

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -13
app.py CHANGED
@@ -1,4 +1,14 @@
1
- # pip install -r requirements.txt
 
 
 
 
 
 
 
 
 
 
2
 
3
  # ------------------------------
4
  # Imports & Dependencies
@@ -7,8 +17,8 @@ from langchain_openai import OpenAIEmbeddings
7
  from langchain_community.vectorstores import Chroma
8
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
9
  from langchain.text_splitter import RecursiveCharacterTextSplitter
10
- from langgraph.graph import END, StateGraph # Removed START import
11
- from langgraph.nodes.tool_node import ToolNode
12
  from langgraph.graph.message import add_messages
13
  from typing_extensions import TypedDict, Annotated
14
  from typing import Sequence
@@ -67,9 +77,9 @@ development_retriever = development_vectorstore.as_retriever()
67
  # Creating Retriever Tools
68
  # ------------------------------
69
  research_tool = create_retriever_tool(
70
- research_retriever, # Retriever object
71
- "research_db_tool", # Name of the tool
72
- "Search information from the research database." # Tool description
73
  )
74
 
75
  development_tool = create_retriever_tool(
@@ -95,7 +105,6 @@ def agent(state: AgentState):
95
  else:
96
  user_message = messages[0].content
97
 
98
- # Structure prompt for consistent text output
99
  prompt = f"""Given this user question: "{user_message}"
100
  If it's about research or academic topics, respond EXACTLY in this format:
101
  SEARCH_RESEARCH: <search terms>
@@ -130,7 +139,6 @@ Otherwise, just answer directly.
130
  response_text = response.json()['choices'][0]['message']['content']
131
  print("Raw response:", response_text)
132
 
133
- # Format the response into expected tool format
134
  if "SEARCH_RESEARCH:" in response_text:
135
  query = response_text.split("SEARCH_RESEARCH:")[1].strip()
136
  results = research_retriever.invoke(query)
@@ -164,7 +172,6 @@ def generate(state: AgentState):
164
  question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
165
  last_message = messages[-1]
166
 
167
- # Extract the document content from the results
168
  docs = ""
169
  if "Results: [" in last_message.content:
170
  results_start = last_message.content.find("Results: [")
@@ -306,7 +313,6 @@ def main():
306
  initial_sidebar_state="expanded"
307
  )
308
 
309
- # Custom CSS for styling
310
  st.markdown("""
311
  <style>
312
  .stApp {
@@ -332,7 +338,6 @@ def main():
332
  </style>
333
  """, unsafe_allow_html=True)
334
 
335
- # Sidebar with available data
336
  with st.sidebar:
337
  st.header("πŸ“š Available Data")
338
 
@@ -347,7 +352,6 @@ def main():
347
  st.title("πŸ€– AI Research & Development Assistant")
348
  st.markdown("---")
349
 
350
- # Query input box
351
  query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
352
 
353
  col1, col2 = st.columns([1, 2])
@@ -386,4 +390,4 @@ def main():
386
  """)
387
 
388
  if __name__ == "__main__":
389
- main()
 
1
+ # requirements.txt contents:
2
+ """
3
+ langgraph>=0.0.25
4
+ langchain_openai>=0.0.4
5
+ langchain_community>=0.0.11
6
+ chromadb>=0.4.15
7
+ openai>=1.9.0
8
+ streamlit>=1.29.0
9
+ requests>=2.31.0
10
+ typing-extensions>=4.9.0
11
+ """
12
 
13
  # ------------------------------
14
  # Imports & Dependencies
 
17
  from langchain_community.vectorstores import Chroma
18
  from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
19
  from langchain.text_splitter import RecursiveCharacterTextSplitter
20
+ from langgraph.graph import END, StateGraph
21
+ from langgraph.prebuilt import ToolNode # Corrected import
22
  from langgraph.graph.message import add_messages
23
  from typing_extensions import TypedDict, Annotated
24
  from typing import Sequence
 
77
  # Creating Retriever Tools
78
  # ------------------------------
79
  research_tool = create_retriever_tool(
80
+ research_retriever,
81
+ "research_db_tool",
82
+ "Search information from the research database."
83
  )
84
 
85
  development_tool = create_retriever_tool(
 
105
  else:
106
  user_message = messages[0].content
107
 
 
108
  prompt = f"""Given this user question: "{user_message}"
109
  If it's about research or academic topics, respond EXACTLY in this format:
110
  SEARCH_RESEARCH: <search terms>
 
139
  response_text = response.json()['choices'][0]['message']['content']
140
  print("Raw response:", response_text)
141
 
 
142
  if "SEARCH_RESEARCH:" in response_text:
143
  query = response_text.split("SEARCH_RESEARCH:")[1].strip()
144
  results = research_retriever.invoke(query)
 
172
  question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
173
  last_message = messages[-1]
174
 
 
175
  docs = ""
176
  if "Results: [" in last_message.content:
177
  results_start = last_message.content.find("Results: [")
 
313
  initial_sidebar_state="expanded"
314
  )
315
 
 
316
  st.markdown("""
317
  <style>
318
  .stApp {
 
338
  </style>
339
  """, unsafe_allow_html=True)
340
 
 
341
  with st.sidebar:
342
  st.header("πŸ“š Available Data")
343
 
 
352
  st.title("πŸ€– AI Research & Development Assistant")
353
  st.markdown("---")
354
 
 
355
  query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
356
 
357
  col1, col2 = st.columns([1, 2])
 
390
  """)
391
 
392
  if __name__ == "__main__":
393
+ main()