Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
# app.py
|
2 |
-
#
|
3 |
#
|
4 |
-
#
|
5 |
-
#
|
6 |
#
|
7 |
-
#
|
8 |
-
#
|
9 |
-
#
|
10 |
-
#
|
11 |
-
# Written with a vision for tomorrow—by someone who believes in building the future.
|
12 |
|
13 |
import os
|
14 |
import re
|
@@ -18,65 +17,51 @@ import requests
|
|
18 |
from typing import Sequence
|
19 |
from typing_extensions import TypedDict, Annotated
|
20 |
|
21 |
-
#
|
22 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
23 |
from langchain.vectorstores import Chroma
|
24 |
from langchain.schema import HumanMessage, AIMessage
|
25 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
26 |
from langchain.tools.retriever import create_retriever_tool
|
27 |
|
28 |
-
# Imports for LangGraph
|
29 |
from langgraph.graph import END, StateGraph, START
|
30 |
from langgraph.prebuilt import ToolNode
|
31 |
from langgraph.graph.message import add_messages
|
32 |
|
33 |
-
#
|
34 |
-
from chromadb.config import Settings
|
35 |
-
|
36 |
-
# Set up logging
|
37 |
logging.basicConfig(level=logging.INFO)
|
38 |
logger = logging.getLogger(__name__)
|
39 |
|
40 |
-
# ---
|
41 |
research_texts = [
|
42 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
43 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
44 |
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
45 |
]
|
|
|
46 |
development_texts = [
|
47 |
"Project A: UI Design Completed, API Integration in Progress",
|
48 |
"Project B: Testing New Feature X, Bug Fixes Needed",
|
49 |
"Product Y: In the Performance Optimization Stage Before Release"
|
50 |
]
|
51 |
|
52 |
-
# ---
|
53 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
54 |
research_docs = splitter.create_documents(research_texts)
|
55 |
development_docs = splitter.create_documents(development_texts)
|
56 |
|
57 |
-
|
58 |
-
embeddings = OpenAIEmbeddings(
|
59 |
-
model="text-embedding-3-large",
|
60 |
-
openai_api_key=os.environ.get("OPENAI_API_KEY")
|
61 |
-
)
|
62 |
-
|
63 |
-
# Use local in-memory settings to avoid tenant issues
|
64 |
-
client_settings = Settings(
|
65 |
-
chroma_api_impl="local",
|
66 |
-
persist_directory=None # Set to a directory like ".chroma" if persistence is needed
|
67 |
-
)
|
68 |
|
69 |
research_vectorstore = Chroma.from_documents(
|
70 |
documents=research_docs,
|
71 |
embedding=embeddings,
|
72 |
-
collection_name="research_collection"
|
73 |
-
client_settings=client_settings
|
74 |
)
|
75 |
development_vectorstore = Chroma.from_documents(
|
76 |
documents=development_docs,
|
77 |
embedding=embeddings,
|
78 |
-
collection_name="development_collection"
|
79 |
-
client_settings=client_settings
|
80 |
)
|
81 |
|
82 |
research_retriever = research_vectorstore.as_retriever()
|
@@ -94,7 +79,8 @@ development_tool = create_retriever_tool(
|
|
94 |
)
|
95 |
tools = [research_tool, development_tool]
|
96 |
|
97 |
-
# ---
|
|
|
98 |
class AgentState(TypedDict):
|
99 |
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
100 |
|
@@ -102,6 +88,7 @@ def agent(state: AgentState):
|
|
102 |
logger.info("Agent invoked")
|
103 |
messages = state["messages"]
|
104 |
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
|
|
|
105 |
prompt = f"""Given this user question: "{user_message}"
|
106 |
If it's about research or academic topics, respond EXACTLY in this format:
|
107 |
SEARCH_RESEARCH: <search terms>
|
@@ -122,8 +109,12 @@ Otherwise, just answer directly.
|
|
122 |
"temperature": 0.7,
|
123 |
"max_tokens": 1024
|
124 |
}
|
125 |
-
response = requests.post(
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
if response.status_code == 200:
|
128 |
response_text = response.json()['choices'][0]['message']['content']
|
129 |
logger.info(f"DeepSeek response: {response_text}")
|
@@ -145,14 +136,19 @@ Otherwise, just answer directly.
|
|
145 |
def simple_grade_documents(state: AgentState):
|
146 |
last_message = state["messages"][-1]
|
147 |
logger.info(f"Grading message: {last_message.content}")
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
def generate(state: AgentState):
|
151 |
logger.info("Generating final answer")
|
152 |
messages = state["messages"]
|
153 |
question = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
|
154 |
last_message = messages[-1]
|
155 |
-
docs =
|
|
|
|
|
156 |
headers = {
|
157 |
"Accept": "application/json",
|
158 |
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
@@ -169,8 +165,12 @@ Focus on extracting and synthesizing the key findings from the research papers.
|
|
169 |
"temperature": 0.7,
|
170 |
"max_tokens": 1024
|
171 |
}
|
172 |
-
response = requests.post(
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
if response.status_code == 200:
|
175 |
response_text = response.json()['choices'][0]['message']['content']
|
176 |
return {"messages": [AIMessage(content=response_text)]}
|
@@ -193,8 +193,12 @@ def rewrite(state: AgentState):
|
|
193 |
"temperature": 0.7,
|
194 |
"max_tokens": 1024
|
195 |
}
|
196 |
-
response = requests.post(
|
197 |
-
|
|
|
|
|
|
|
|
|
198 |
if response.status_code == 200:
|
199 |
response_text = response.json()['choices'][0]['message']['content']
|
200 |
return {"messages": [AIMessage(content=response_text)]}
|
@@ -206,9 +210,11 @@ def rewrite(state: AgentState):
|
|
206 |
tools_pattern = re.compile(r"Action: .*")
|
207 |
def custom_tools_condition(state: AgentState):
|
208 |
last_message = state["messages"][-1]
|
209 |
-
|
|
|
|
|
210 |
|
211 |
-
# Build the workflow
|
212 |
workflow = StateGraph(AgentState)
|
213 |
workflow.add_node("agent", agent)
|
214 |
retrieve_node = ToolNode(tools)
|
@@ -228,36 +234,34 @@ def process_question(user_question, app, config):
|
|
228 |
events.append(event)
|
229 |
return events
|
230 |
|
231 |
-
# --- Streamlit UI
|
232 |
def main():
|
233 |
-
st.set_page_config(page_title="
|
234 |
-
st.markdown(
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
</style>
|
246 |
-
""", unsafe_allow_html=True)
|
247 |
|
248 |
-
# Sidebar: Display available data
|
249 |
with st.sidebar:
|
250 |
st.header("📚 Available Data")
|
251 |
st.subheader("Research Database")
|
252 |
for text in research_texts:
|
253 |
-
st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
|
254 |
st.subheader("Development Database")
|
255 |
for text in development_texts:
|
256 |
-
st.markdown(f'<div class="data-box">{text}</div>', unsafe_allow_html=True)
|
257 |
|
258 |
-
st.title("🤖
|
259 |
st.markdown("---")
|
260 |
-
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What
|
261 |
|
262 |
col1, col2 = st.columns([1, 2])
|
263 |
with col1:
|
@@ -279,17 +283,19 @@ def main():
|
|
279 |
else:
|
280 |
st.warning("⚠️ Please enter a question first!")
|
281 |
with col2:
|
282 |
-
st.markdown(
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
|
294 |
if __name__ == "__main__":
|
295 |
main()
|
|
|
1 |
# app.py
|
2 |
+
# Advanced AI R&D Assistant for Hugging Face Spaces
|
3 |
#
|
4 |
+
# This app leverages LangGraph, DeepSeek-R1 via text-based function calling, and Agentic RAG.
|
5 |
+
# API keys are securely loaded via environment variables.
|
6 |
#
|
7 |
+
# To deploy:
|
8 |
+
# 1. Add your API key to Hugging Face Space secrets with the key DEEP_SEEK_API.
|
9 |
+
# 2. Ensure your requirements.txt includes langchain-community.
|
10 |
+
# 3. Run the app with Streamlit.
|
|
|
11 |
|
12 |
import os
|
13 |
import re
|
|
|
17 |
from typing import Sequence
|
18 |
from typing_extensions import TypedDict, Annotated
|
19 |
|
20 |
+
# Updated imports for LangChain
|
21 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
22 |
from langchain.vectorstores import Chroma
|
23 |
from langchain.schema import HumanMessage, AIMessage
|
24 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
25 |
from langchain.tools.retriever import create_retriever_tool
|
26 |
|
27 |
+
# Imports for LangGraph remain the same
|
28 |
from langgraph.graph import END, StateGraph, START
|
29 |
from langgraph.prebuilt import ToolNode
|
30 |
from langgraph.graph.message import add_messages
|
31 |
|
32 |
+
# Configure logging
|
|
|
|
|
|
|
33 |
logging.basicConfig(level=logging.INFO)
|
34 |
logger = logging.getLogger(__name__)
|
35 |
|
36 |
+
# --- Dummy Data Setup ---
|
37 |
research_texts = [
|
38 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
39 |
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
40 |
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
41 |
]
|
42 |
+
|
43 |
development_texts = [
|
44 |
"Project A: UI Design Completed, API Integration in Progress",
|
45 |
"Project B: Testing New Feature X, Bug Fixes Needed",
|
46 |
"Product Y: In the Performance Optimization Stage Before Release"
|
47 |
]
|
48 |
|
49 |
+
# --- Preprocessing & Embeddings ---
|
50 |
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
51 |
research_docs = splitter.create_documents(research_texts)
|
52 |
development_docs = splitter.create_documents(development_texts)
|
53 |
|
54 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
research_vectorstore = Chroma.from_documents(
|
57 |
documents=research_docs,
|
58 |
embedding=embeddings,
|
59 |
+
collection_name="research_collection"
|
|
|
60 |
)
|
61 |
development_vectorstore = Chroma.from_documents(
|
62 |
documents=development_docs,
|
63 |
embedding=embeddings,
|
64 |
+
collection_name="development_collection"
|
|
|
65 |
)
|
66 |
|
67 |
research_retriever = research_vectorstore.as_retriever()
|
|
|
79 |
)
|
80 |
tools = [research_tool, development_tool]
|
81 |
|
82 |
+
# --- Agent and Workflow Functions ---
|
83 |
+
# Note: We are using only AIMessage and HumanMessage for our message types.
|
84 |
class AgentState(TypedDict):
|
85 |
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
86 |
|
|
|
88 |
logger.info("Agent invoked")
|
89 |
messages = state["messages"]
|
90 |
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
|
91 |
+
|
92 |
prompt = f"""Given this user question: "{user_message}"
|
93 |
If it's about research or academic topics, respond EXACTLY in this format:
|
94 |
SEARCH_RESEARCH: <search terms>
|
|
|
109 |
"temperature": 0.7,
|
110 |
"max_tokens": 1024
|
111 |
}
|
112 |
+
response = requests.post(
|
113 |
+
"https://api.deepseek.com/v1/chat/completions",
|
114 |
+
headers=headers,
|
115 |
+
json=data,
|
116 |
+
verify=False
|
117 |
+
)
|
118 |
if response.status_code == 200:
|
119 |
response_text = response.json()['choices'][0]['message']['content']
|
120 |
logger.info(f"DeepSeek response: {response_text}")
|
|
|
136 |
def simple_grade_documents(state: AgentState):
|
137 |
last_message = state["messages"][-1]
|
138 |
logger.info(f"Grading message: {last_message.content}")
|
139 |
+
if "Results: [Document" in last_message.content:
|
140 |
+
return "generate"
|
141 |
+
else:
|
142 |
+
return "rewrite"
|
143 |
|
144 |
def generate(state: AgentState):
|
145 |
logger.info("Generating final answer")
|
146 |
messages = state["messages"]
|
147 |
question = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
|
148 |
last_message = messages[-1]
|
149 |
+
docs = ""
|
150 |
+
if "Results: [" in last_message.content:
|
151 |
+
docs = last_message.content[last_message.content.find("Results: ["):]
|
152 |
headers = {
|
153 |
"Accept": "application/json",
|
154 |
"Authorization": f"Bearer {os.environ.get('DEEP_SEEK_API')}",
|
|
|
165 |
"temperature": 0.7,
|
166 |
"max_tokens": 1024
|
167 |
}
|
168 |
+
response = requests.post(
|
169 |
+
"https://api.deepseek.com/v1/chat/completions",
|
170 |
+
headers=headers,
|
171 |
+
json=data,
|
172 |
+
verify=False
|
173 |
+
)
|
174 |
if response.status_code == 200:
|
175 |
response_text = response.json()['choices'][0]['message']['content']
|
176 |
return {"messages": [AIMessage(content=response_text)]}
|
|
|
193 |
"temperature": 0.7,
|
194 |
"max_tokens": 1024
|
195 |
}
|
196 |
+
response = requests.post(
|
197 |
+
"https://api.deepseek.com/v1/chat/completions",
|
198 |
+
headers=headers,
|
199 |
+
json=data,
|
200 |
+
verify=False
|
201 |
+
)
|
202 |
if response.status_code == 200:
|
203 |
response_text = response.json()['choices'][0]['message']['content']
|
204 |
return {"messages": [AIMessage(content=response_text)]}
|
|
|
210 |
tools_pattern = re.compile(r"Action: .*")
|
211 |
def custom_tools_condition(state: AgentState):
|
212 |
last_message = state["messages"][-1]
|
213 |
+
if tools_pattern.match(last_message.content):
|
214 |
+
return "tools"
|
215 |
+
return END
|
216 |
|
217 |
+
# Build the workflow with LangGraph's StateGraph
|
218 |
workflow = StateGraph(AgentState)
|
219 |
workflow.add_node("agent", agent)
|
220 |
retrieve_node = ToolNode(tools)
|
|
|
234 |
events.append(event)
|
235 |
return events
|
236 |
|
237 |
+
# --- Streamlit UI ---
|
238 |
def main():
|
239 |
+
st.set_page_config(page_title="Advanced AI R&D Assistant", layout="wide", initial_sidebar_state="expanded")
|
240 |
+
st.markdown(
|
241 |
+
"""
|
242 |
+
<style>
|
243 |
+
.stApp { background-color: #f8f9fa; }
|
244 |
+
.stButton > button { width: 100%; margin-top: 20px; }
|
245 |
+
.data-box { padding: 20px; border-radius: 10px; margin: 10px 0; }
|
246 |
+
.research-box { background-color: #e3f2fd; border-left: 5px solid #1976d2; }
|
247 |
+
.dev-box { background-color: #e8f5e9; border-left: 5px solid #43a047; }
|
248 |
+
</style>
|
249 |
+
""", unsafe_allow_html=True
|
250 |
+
)
|
|
|
|
|
251 |
|
252 |
+
# Sidebar: Display available data
|
253 |
with st.sidebar:
|
254 |
st.header("📚 Available Data")
|
255 |
st.subheader("Research Database")
|
256 |
for text in research_texts:
|
257 |
+
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
258 |
st.subheader("Development Database")
|
259 |
for text in development_texts:
|
260 |
+
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
261 |
|
262 |
+
st.title("🤖 Advanced AI R&D Assistant")
|
263 |
st.markdown("---")
|
264 |
+
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
265 |
|
266 |
col1, col2 = st.columns([1, 2])
|
267 |
with col1:
|
|
|
283 |
else:
|
284 |
st.warning("⚠️ Please enter a question first!")
|
285 |
with col2:
|
286 |
+
st.markdown(
|
287 |
+
"""
|
288 |
+
### 🎯 How to Use
|
289 |
+
1. Type your question in the text box.
|
290 |
+
2. Click "Get Answer" to process.
|
291 |
+
3. View retrieved documents and the final answer.
|
292 |
+
|
293 |
+
### 💡 Example Questions
|
294 |
+
- What are the latest advancements in AI research?
|
295 |
+
- What is the status of Project A?
|
296 |
+
- What are the current trends in machine learning?
|
297 |
+
"""
|
298 |
+
)
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
main()
|