Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,30 +9,27 @@ from langgraph.graph import END, StateGraph
|
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
-
from typing import Sequence
|
13 |
import chromadb
|
14 |
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
-
import hashlib
|
19 |
from langchain.tools.retriever import create_retriever_tool
|
20 |
-
from langchain.schema import Document
|
21 |
|
22 |
# ------------------------------
|
23 |
# Configuration
|
24 |
# ------------------------------
|
25 |
-
# Get DeepSeek API key from
|
26 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
27 |
|
28 |
-
# Validate API key configuration
|
29 |
if not DEEPSEEK_API_KEY:
|
30 |
st.error("""
|
31 |
-
**
|
32 |
-
DeepSeek API key
|
33 |
-
1.
|
34 |
-
2.
|
35 |
-
3.
|
36 |
""")
|
37 |
st.stop()
|
38 |
|
@@ -42,28 +39,10 @@ os.makedirs("chroma_db", exist_ok=True)
|
|
42 |
# ------------------------------
|
43 |
# ChromaDB Client Configuration
|
44 |
# ------------------------------
|
45 |
-
|
46 |
-
chroma_client = chromadb.PersistentClient(
|
47 |
-
path="chroma_db",
|
48 |
-
settings=chromadb.config.Settings(anonymized_telemetry=False)
|
49 |
-
)
|
50 |
-
|
51 |
-
# ------------------------------
|
52 |
-
# Document Processing Utilities
|
53 |
-
# ------------------------------
|
54 |
-
def deduplicate_docs(docs: List[Document]) -> List[Document]:
|
55 |
-
"""Remove duplicate documents using content hashing"""
|
56 |
-
seen = set()
|
57 |
-
unique_docs = []
|
58 |
-
for doc in docs:
|
59 |
-
content_hash = hashlib.sha256(doc.page_content.encode()).hexdigest()
|
60 |
-
if content_hash not in seen:
|
61 |
-
seen.add(content_hash)
|
62 |
-
unique_docs.append(doc)
|
63 |
-
return unique_docs
|
64 |
|
65 |
# ------------------------------
|
66 |
-
# Data
|
67 |
# ------------------------------
|
68 |
research_texts = [
|
69 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
@@ -77,461 +56,407 @@ development_texts = [
|
|
77 |
"Product Y: In the Performance Optimization Stage Before Release"
|
78 |
]
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
)
|
87 |
-
|
88 |
-
research_docs = splitter.create_documents(
|
89 |
-
research_texts,
|
90 |
-
metadatas=[{"source": "research", "doc_id": f"res_{i}"} for i in range(len(research_texts))]
|
91 |
-
)
|
92 |
-
|
93 |
-
development_docs = splitter.create_documents(
|
94 |
-
development_texts,
|
95 |
-
metadatas=[{"source": "development", "doc_id": f"dev_{i}"} for i in range(len(development_texts))]
|
96 |
-
)
|
97 |
|
98 |
# ------------------------------
|
99 |
-
# Vector
|
100 |
# ------------------------------
|
101 |
embeddings = OpenAIEmbeddings(
|
102 |
model="text-embedding-3-large",
|
103 |
-
|
104 |
)
|
105 |
|
106 |
research_vectorstore = Chroma.from_documents(
|
107 |
documents=research_docs,
|
108 |
embedding=embeddings,
|
109 |
client=chroma_client,
|
110 |
-
collection_name="research_collection"
|
111 |
-
collection_metadata={"hnsw:space": "cosine"}
|
112 |
)
|
113 |
|
114 |
development_vectorstore = Chroma.from_documents(
|
115 |
documents=development_docs,
|
116 |
embedding=embeddings,
|
117 |
client=chroma_client,
|
118 |
-
collection_name="development_collection"
|
119 |
-
collection_metadata={"hnsw:space": "cosine"}
|
120 |
)
|
121 |
|
|
|
|
|
|
|
122 |
# ------------------------------
|
123 |
-
# Retriever Tools
|
124 |
# ------------------------------
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
128 |
)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
)
|
134 |
|
135 |
-
tools = [
|
136 |
-
create_retriever_tool(
|
137 |
-
research_retriever,
|
138 |
-
"research_database",
|
139 |
-
"Searches through academic papers and research reports for technical AI advancements"
|
140 |
-
),
|
141 |
-
create_retriever_tool(
|
142 |
-
development_retriever,
|
143 |
-
"development_database",
|
144 |
-
"Accesses current project statuses and development timelines"
|
145 |
-
)
|
146 |
-
]
|
147 |
|
148 |
# ------------------------------
|
149 |
-
# Agent
|
150 |
# ------------------------------
|
151 |
class AgentState(TypedDict):
|
152 |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
153 |
|
154 |
-
# ------------------------------
|
155 |
-
# Core Agent Function
|
156 |
-
# ------------------------------
|
157 |
def agent(state: AgentState):
|
158 |
-
"
|
159 |
-
print("\n--- AGENT EXECUTION START ---")
|
160 |
messages = state["messages"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
try:
|
163 |
-
# Extract user message content
|
164 |
-
user_message = messages[-1].content if isinstance(messages[-1], HumanMessage) else ""
|
165 |
-
|
166 |
-
# Construct analysis prompt
|
167 |
-
prompt = f"""Analyze this user query and determine the appropriate action:
|
168 |
-
|
169 |
-
Query: {user_message}
|
170 |
-
|
171 |
-
Response Format:
|
172 |
-
- If research-related (technical details, academic concepts), respond:
|
173 |
-
SEARCH_RESEARCH: [keywords]
|
174 |
-
|
175 |
-
- If development-related (project status, timelines), respond:
|
176 |
-
SEARCH_DEV: [keywords]
|
177 |
-
|
178 |
-
- If general question, answer directly
|
179 |
-
- If unclear, request clarification
|
180 |
-
"""
|
181 |
-
|
182 |
-
# API request configuration
|
183 |
-
headers = {
|
184 |
-
"Accept": "application/json",
|
185 |
-
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
186 |
-
"Content-Type": "application/json"
|
187 |
-
}
|
188 |
-
|
189 |
-
data = {
|
190 |
-
"model": "deepseek-chat",
|
191 |
-
"messages": [{"role": "user", "content": prompt}],
|
192 |
-
"temperature": 0.5,
|
193 |
-
"max_tokens": 256
|
194 |
-
}
|
195 |
-
|
196 |
-
# Execute API call
|
197 |
response = requests.post(
|
198 |
"https://api.deepseek.com/v1/chat/completions",
|
199 |
headers=headers,
|
200 |
json=data,
|
|
|
201 |
timeout=30
|
202 |
)
|
203 |
response.raise_for_status()
|
204 |
|
205 |
-
# Process response
|
206 |
response_text = response.json()['choices'][0]['message']['content']
|
207 |
-
print(
|
208 |
-
|
209 |
-
# Handle different response types
|
210 |
if "SEARCH_RESEARCH:" in response_text:
|
211 |
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
212 |
results = research_retriever.invoke(query)
|
213 |
-
|
214 |
-
return {
|
215 |
-
"messages": [
|
216 |
-
AIMessage(
|
217 |
-
content=f'Action: research_database\nQuery: "{query}"\nResults: {len(unique_results)} relevant documents',
|
218 |
-
additional_kwargs={"documents": unique_results}
|
219 |
-
)
|
220 |
-
]
|
221 |
-
}
|
222 |
|
223 |
elif "SEARCH_DEV:" in response_text:
|
224 |
query = response_text.split("SEARCH_DEV:")[1].strip()
|
225 |
results = development_retriever.invoke(query)
|
226 |
-
|
227 |
-
return {
|
228 |
-
"messages": [
|
229 |
-
AIMessage(
|
230 |
-
content=f'Action: development_database\nQuery: "{query}"\nResults: {len(unique_results)} relevant documents',
|
231 |
-
additional_kwargs={"documents": unique_results}
|
232 |
-
)
|
233 |
-
]
|
234 |
-
}
|
235 |
|
236 |
else:
|
237 |
return {"messages": [AIMessage(content=response_text)]}
|
238 |
|
239 |
-
except requests.exceptions.HTTPError as e:
|
240 |
-
error_msg = f"API Error: {e.response.status_code} - {e.response.text}"
|
241 |
-
if "insufficient balance" in e.response.text.lower():
|
242 |
-
error_msg += "\n\nPlease check your DeepSeek account balance."
|
243 |
-
return {"messages": [AIMessage(content=error_msg)]}
|
244 |
except Exception as e:
|
245 |
-
|
|
|
|
|
|
|
246 |
|
247 |
-
# ------------------------------
|
248 |
-
# Document Evaluation Functions
|
249 |
-
# ------------------------------
|
250 |
def simple_grade_documents(state: AgentState):
|
251 |
-
"""Evaluate retrieved document relevance"""
|
252 |
messages = state["messages"]
|
253 |
last_message = messages[-1]
|
|
|
254 |
|
255 |
-
if last_message.
|
256 |
-
print("---
|
257 |
return "generate"
|
258 |
else:
|
259 |
-
print("---
|
260 |
return "rewrite"
|
261 |
|
262 |
def generate(state: AgentState):
|
263 |
-
"
|
264 |
-
print("\n--- GENERATING FINAL ANSWER ---")
|
265 |
messages = state["messages"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
try:
|
268 |
-
|
269 |
-
user_question = next(msg.content for msg in messages if isinstance(msg, HumanMessage))
|
270 |
-
documents = messages[-1].additional_kwargs.get("documents", [])
|
271 |
-
|
272 |
-
# Format document sources
|
273 |
-
sources = list(set(
|
274 |
-
doc.metadata.get('source', 'unknown')
|
275 |
-
for doc in documents
|
276 |
-
))
|
277 |
-
|
278 |
-
# Create analysis prompt
|
279 |
-
prompt = f"""Synthesize a technical answer using these documents:
|
280 |
-
|
281 |
-
Question: {user_question}
|
282 |
-
|
283 |
-
Documents:
|
284 |
-
{[doc.page_content for doc in documents]}
|
285 |
-
|
286 |
-
Requirements:
|
287 |
-
1. Highlight quantitative metrics
|
288 |
-
2. Cite document sources (research/development)
|
289 |
-
3. Note temporal context
|
290 |
-
4. List potential applications
|
291 |
-
5. Mention limitations/gaps
|
292 |
-
"""
|
293 |
-
|
294 |
-
# API request configuration
|
295 |
-
headers = {
|
296 |
-
"Accept": "application/json",
|
297 |
-
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
298 |
-
"Content-Type": "application/json"
|
299 |
-
}
|
300 |
-
|
301 |
-
data = {
|
302 |
-
"model": "deepseek-chat",
|
303 |
-
"messages": [{"role": "user", "content": prompt}],
|
304 |
-
"temperature": 0.3,
|
305 |
-
"max_tokens": 1024
|
306 |
-
}
|
307 |
-
|
308 |
-
# Execute API call
|
309 |
response = requests.post(
|
310 |
"https://api.deepseek.com/v1/chat/completions",
|
311 |
headers=headers,
|
312 |
json=data,
|
313 |
-
|
|
|
314 |
)
|
315 |
response.raise_for_status()
|
316 |
|
317 |
-
# Format final answer
|
318 |
response_text = response.json()['choices'][0]['message']['content']
|
319 |
-
|
320 |
-
|
321 |
-
return {"messages": [AIMessage(content=formatted_answer)]}
|
322 |
-
|
323 |
except Exception as e:
|
324 |
-
|
|
|
325 |
|
326 |
def rewrite(state: AgentState):
|
327 |
-
"
|
328 |
-
print("\n--- REWRITING QUERY ---")
|
329 |
messages = state["messages"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
try:
|
332 |
-
|
333 |
-
|
334 |
-
headers = {
|
335 |
-
"Accept": "application/json",
|
336 |
-
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
337 |
-
"Content-Type": "application/json"
|
338 |
-
}
|
339 |
-
|
340 |
-
data = {
|
341 |
-
"model": "deepseek-chat",
|
342 |
-
"messages": [{
|
343 |
-
"role": "user",
|
344 |
-
"content": f"Clarify this query while preserving technical intent: {original_query}"
|
345 |
-
}],
|
346 |
-
"temperature": 0.5,
|
347 |
-
"max_tokens": 256
|
348 |
-
}
|
349 |
-
|
350 |
response = requests.post(
|
351 |
"https://api.deepseek.com/v1/chat/completions",
|
352 |
headers=headers,
|
353 |
json=data,
|
|
|
354 |
timeout=30
|
355 |
)
|
356 |
response.raise_for_status()
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
except Exception as e:
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
# ------------------------------
|
365 |
-
# Workflow Configuration
|
366 |
# ------------------------------
|
367 |
workflow = StateGraph(AgentState)
|
368 |
|
369 |
-
#
|
370 |
workflow.add_node("agent", agent)
|
371 |
-
|
372 |
-
workflow.add_node("
|
373 |
workflow.add_node("rewrite", rewrite)
|
|
|
374 |
|
375 |
-
#
|
376 |
workflow.set_entry_point("agent")
|
377 |
|
|
|
378 |
workflow.add_conditional_edges(
|
379 |
"agent",
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
)
|
386 |
|
387 |
workflow.add_conditional_edges(
|
388 |
"retrieve",
|
389 |
simple_grade_documents,
|
390 |
-
{
|
|
|
|
|
|
|
391 |
)
|
392 |
|
393 |
workflow.add_edge("generate", END)
|
394 |
workflow.add_edge("rewrite", "agent")
|
395 |
|
|
|
396 |
app = workflow.compile()
|
397 |
|
398 |
# ------------------------------
|
399 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
# ------------------------------
|
401 |
def main():
|
402 |
-
"""Main application interface"""
|
403 |
st.set_page_config(
|
404 |
-
page_title="AI Research Assistant",
|
405 |
-
layout="
|
406 |
initial_sidebar_state="expanded"
|
407 |
)
|
408 |
|
409 |
-
# Dark Theme Configuration
|
410 |
st.markdown("""
|
411 |
<style>
|
412 |
.stApp {
|
413 |
-
background-color: #
|
414 |
-
color: #
|
415 |
}
|
416 |
|
417 |
.stTextArea textarea {
|
418 |
-
background-color: #
|
419 |
-
color: #
|
420 |
-
border: 1px solid #3D4051;
|
421 |
}
|
422 |
|
423 |
-
.stButton>button {
|
424 |
-
background-color: #
|
425 |
color: white;
|
426 |
-
border-radius: 4px;
|
427 |
-
padding: 0.5rem 1rem;
|
428 |
transition: all 0.3s;
|
429 |
}
|
430 |
|
431 |
-
.stButton>button:hover {
|
432 |
-
background-color: #
|
433 |
transform: scale(1.02);
|
434 |
}
|
435 |
|
436 |
-
.
|
437 |
-
background-color: #
|
438 |
-
border:
|
439 |
}
|
440 |
|
441 |
-
.
|
442 |
-
|
443 |
-
border: 1px solid #3D4051;
|
444 |
}
|
445 |
|
446 |
-
.
|
447 |
-
|
448 |
-
|
449 |
-
background-color: #1A1D23;
|
450 |
-
border-left: 3px solid #2E8B57;
|
451 |
-
border-radius: 4px;
|
452 |
}
|
453 |
</style>
|
454 |
""", unsafe_allow_html=True)
|
455 |
|
456 |
-
# Sidebar Configuration
|
457 |
with st.sidebar:
|
458 |
-
st.header("
|
459 |
-
|
460 |
-
|
461 |
-
-
|
462 |
-
- Machine Learning Advances
|
463 |
-
- Quantum Computing Applications
|
464 |
-
- Algorithmic Breakthroughs
|
465 |
-
""")
|
466 |
-
|
467 |
-
with st.expander("Development Tracking", expanded=True):
|
468 |
-
st.markdown("""
|
469 |
-
- Project Milestones
|
470 |
-
- System Architecture
|
471 |
-
- Deployment Status
|
472 |
-
- Performance Metrics
|
473 |
-
""")
|
474 |
-
|
475 |
-
# Main Interface
|
476 |
-
st.title("π§ AI Research Assistant")
|
477 |
-
st.caption("Technical Analysis and Development Tracking System")
|
478 |
-
|
479 |
-
query = st.text_area(
|
480 |
-
"Enter Technical Query:",
|
481 |
-
height=150,
|
482 |
-
placeholder="Example: Compare transformer architectures for medical imaging analysis..."
|
483 |
-
)
|
484 |
-
|
485 |
-
if st.button("Execute Analysis", use_container_width=True):
|
486 |
-
if not query:
|
487 |
-
st.warning("Please input a technical query")
|
488 |
-
return
|
489 |
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
|
|
|
|
|
|
503 |
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
|
536 |
if __name__ == "__main__":
|
537 |
main()
|
|
|
9 |
from langgraph.prebuilt import ToolNode
|
10 |
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
+
from typing import Sequence
|
13 |
import chromadb
|
14 |
import re
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
|
|
18 |
from langchain.tools.retriever import create_retriever_tool
|
|
|
19 |
|
20 |
# ------------------------------
|
21 |
# Configuration
|
22 |
# ------------------------------
|
23 |
+
# Get DeepSeek API key from Hugging Face Space secrets
|
24 |
DEEPSEEK_API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
25 |
|
|
|
26 |
if not DEEPSEEK_API_KEY:
|
27 |
st.error("""
|
28 |
+
**Missing API Configuration**
|
29 |
+
Please configure your DeepSeek API key in Hugging Face Space secrets:
|
30 |
+
1. Go to your Space's Settings
|
31 |
+
2. Click on 'Repository secrets'
|
32 |
+
3. Add a secret named DEEPSEEK_API_KEY
|
33 |
""")
|
34 |
st.stop()
|
35 |
|
|
|
39 |
# ------------------------------
|
40 |
# ChromaDB Client Configuration
|
41 |
# ------------------------------
|
42 |
+
chroma_client = chromadb.PersistentClient(path="chroma_db")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ------------------------------
|
45 |
+
# Dummy Data: Research & Development Texts
|
46 |
# ------------------------------
|
47 |
research_texts = [
|
48 |
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
|
|
56 |
"Product Y: In the Performance Optimization Stage Before Release"
|
57 |
]
|
58 |
|
59 |
+
# ------------------------------
|
60 |
+
# Text Splitting & Document Creation
|
61 |
+
# ------------------------------
|
62 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
63 |
+
research_docs = splitter.create_documents(research_texts)
|
64 |
+
development_docs = splitter.create_documents(development_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# ------------------------------
|
67 |
+
# Creating Vector Stores with Embeddings
|
68 |
# ------------------------------
|
69 |
embeddings = OpenAIEmbeddings(
|
70 |
model="text-embedding-3-large",
|
71 |
+
# dimensions=1024 # Uncomment if needed
|
72 |
)
|
73 |
|
74 |
research_vectorstore = Chroma.from_documents(
|
75 |
documents=research_docs,
|
76 |
embedding=embeddings,
|
77 |
client=chroma_client,
|
78 |
+
collection_name="research_collection"
|
|
|
79 |
)
|
80 |
|
81 |
development_vectorstore = Chroma.from_documents(
|
82 |
documents=development_docs,
|
83 |
embedding=embeddings,
|
84 |
client=chroma_client,
|
85 |
+
collection_name="development_collection"
|
|
|
86 |
)
|
87 |
|
88 |
+
research_retriever = research_vectorstore.as_retriever()
|
89 |
+
development_retriever = development_vectorstore.as_retriever()
|
90 |
+
|
91 |
# ------------------------------
|
92 |
+
# Creating Retriever Tools
|
93 |
# ------------------------------
|
94 |
+
research_tool = create_retriever_tool(
|
95 |
+
research_retriever,
|
96 |
+
"research_db_tool",
|
97 |
+
"Search information from the research database."
|
98 |
)
|
99 |
|
100 |
+
development_tool = create_retriever_tool(
|
101 |
+
development_retriever,
|
102 |
+
"development_db_tool",
|
103 |
+
"Search information from the development database."
|
104 |
)
|
105 |
|
106 |
+
tools = [research_tool, development_tool]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# ------------------------------
|
109 |
+
# Agent Function & Workflow Functions
|
110 |
# ------------------------------
|
111 |
class AgentState(TypedDict):
|
112 |
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
113 |
|
|
|
|
|
|
|
114 |
def agent(state: AgentState):
|
115 |
+
print("---CALL AGENT---")
|
|
|
116 |
messages = state["messages"]
|
117 |
+
|
118 |
+
if isinstance(messages[0], tuple):
|
119 |
+
user_message = messages[0][1]
|
120 |
+
else:
|
121 |
+
user_message = messages[0].content
|
122 |
+
|
123 |
+
prompt = f"""Given this user question: "{user_message}"
|
124 |
+
If it's about research or academic topics, respond EXACTLY in this format:
|
125 |
+
SEARCH_RESEARCH: <search terms>
|
126 |
+
|
127 |
+
If it's about development status, respond EXACTLY in this format:
|
128 |
+
SEARCH_DEV: <search terms>
|
129 |
+
|
130 |
+
Otherwise, just answer directly.
|
131 |
+
"""
|
132 |
+
|
133 |
+
headers = {
|
134 |
+
"Accept": "application/json",
|
135 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
136 |
+
"Content-Type": "application/json"
|
137 |
+
}
|
138 |
+
|
139 |
+
data = {
|
140 |
+
"model": "deepseek-chat",
|
141 |
+
"messages": [{"role": "user", "content": prompt}],
|
142 |
+
"temperature": 0.7,
|
143 |
+
"max_tokens": 1024
|
144 |
+
}
|
145 |
|
146 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
response = requests.post(
|
148 |
"https://api.deepseek.com/v1/chat/completions",
|
149 |
headers=headers,
|
150 |
json=data,
|
151 |
+
verify=False,
|
152 |
timeout=30
|
153 |
)
|
154 |
response.raise_for_status()
|
155 |
|
|
|
156 |
response_text = response.json()['choices'][0]['message']['content']
|
157 |
+
print("Raw response:", response_text)
|
158 |
+
|
|
|
159 |
if "SEARCH_RESEARCH:" in response_text:
|
160 |
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
161 |
results = research_retriever.invoke(query)
|
162 |
+
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
elif "SEARCH_DEV:" in response_text:
|
165 |
query = response_text.split("SEARCH_DEV:")[1].strip()
|
166 |
results = development_retriever.invoke(query)
|
167 |
+
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
else:
|
170 |
return {"messages": [AIMessage(content=response_text)]}
|
171 |
|
|
|
|
|
|
|
|
|
|
|
172 |
except Exception as e:
|
173 |
+
error_msg = f"API Error: {str(e)}"
|
174 |
+
if "Insufficient Balance" in str(e):
|
175 |
+
error_msg += "\n\nPlease check your DeepSeek API account balance."
|
176 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
177 |
|
|
|
|
|
|
|
178 |
def simple_grade_documents(state: AgentState):
|
|
|
179 |
messages = state["messages"]
|
180 |
last_message = messages[-1]
|
181 |
+
print("Evaluating message:", last_message.content)
|
182 |
|
183 |
+
if "Results: [Document" in last_message.content:
|
184 |
+
print("---DOCS FOUND, GO TO GENERATE---")
|
185 |
return "generate"
|
186 |
else:
|
187 |
+
print("---NO DOCS FOUND, TRY REWRITE---")
|
188 |
return "rewrite"
|
189 |
|
190 |
def generate(state: AgentState):
|
191 |
+
print("---GENERATE FINAL ANSWER---")
|
|
|
192 |
messages = state["messages"]
|
193 |
+
question = messages[0].content if isinstance(messages[0], tuple) else messages[0].content
|
194 |
+
last_message = messages[-1]
|
195 |
+
|
196 |
+
docs = ""
|
197 |
+
if "Results: [" in last_message.content:
|
198 |
+
results_start = last_message.content.find("Results: [")
|
199 |
+
docs = last_message.content[results_start:]
|
200 |
+
print("Documents found:", docs)
|
201 |
+
|
202 |
+
headers = {
|
203 |
+
"Accept": "application/json",
|
204 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
205 |
+
"Content-Type": "application/json"
|
206 |
+
}
|
207 |
+
|
208 |
+
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
209 |
+
Question: {question}
|
210 |
+
Documents: {docs}
|
211 |
+
Focus on extracting and synthesizing the key findings from the research papers.
|
212 |
+
"""
|
213 |
+
|
214 |
+
data = {
|
215 |
+
"model": "deepseek-chat",
|
216 |
+
"messages": [{
|
217 |
+
"role": "user",
|
218 |
+
"content": prompt
|
219 |
+
}],
|
220 |
+
"temperature": 0.7,
|
221 |
+
"max_tokens": 1024
|
222 |
+
}
|
223 |
|
224 |
try:
|
225 |
+
print("Sending generate request to API...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
response = requests.post(
|
227 |
"https://api.deepseek.com/v1/chat/completions",
|
228 |
headers=headers,
|
229 |
json=data,
|
230 |
+
verify=False,
|
231 |
+
timeout=30
|
232 |
)
|
233 |
response.raise_for_status()
|
234 |
|
|
|
235 |
response_text = response.json()['choices'][0]['message']['content']
|
236 |
+
print("Final Answer:", response_text)
|
237 |
+
return {"messages": [AIMessage(content=response_text)]}
|
|
|
|
|
238 |
except Exception as e:
|
239 |
+
error_msg = f"Generation Error: {str(e)}"
|
240 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
241 |
|
242 |
def rewrite(state: AgentState):
|
243 |
+
print("---REWRITE QUESTION---")
|
|
|
244 |
messages = state["messages"]
|
245 |
+
original_question = messages[0].content if len(messages) > 0 else "N/A"
|
246 |
+
|
247 |
+
headers = {
|
248 |
+
"Accept": "application/json",
|
249 |
+
"Authorization": f"Bearer {DEEPSEEK_API_KEY}",
|
250 |
+
"Content-Type": "application/json"
|
251 |
+
}
|
252 |
+
|
253 |
+
data = {
|
254 |
+
"model": "deepseek-chat",
|
255 |
+
"messages": [{
|
256 |
+
"role": "user",
|
257 |
+
"content": f"Rewrite this question to be more specific and clearer: {original_question}"
|
258 |
+
}],
|
259 |
+
"temperature": 0.7,
|
260 |
+
"max_tokens": 1024
|
261 |
+
}
|
262 |
|
263 |
try:
|
264 |
+
print("Sending rewrite request...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
response = requests.post(
|
266 |
"https://api.deepseek.com/v1/chat/completions",
|
267 |
headers=headers,
|
268 |
json=data,
|
269 |
+
verify=False,
|
270 |
timeout=30
|
271 |
)
|
272 |
response.raise_for_status()
|
273 |
|
274 |
+
response_text = response.json()['choices'][0]['message']['content']
|
275 |
+
print("Rewritten question:", response_text)
|
276 |
+
return {"messages": [AIMessage(content=response_text)]}
|
277 |
except Exception as e:
|
278 |
+
error_msg = f"Rewrite Error: {str(e)}"
|
279 |
+
return {"messages": [AIMessage(content=error_msg)]}
|
280 |
+
|
281 |
+
tools_pattern = re.compile(r"Action: .*")
|
282 |
+
|
283 |
+
def custom_tools_condition(state: AgentState):
|
284 |
+
messages = state["messages"]
|
285 |
+
last_message = messages[-1]
|
286 |
+
content = last_message.content
|
287 |
+
|
288 |
+
print("Checking tools condition:", content)
|
289 |
+
if tools_pattern.match(content):
|
290 |
+
print("Moving to retrieve...")
|
291 |
+
return "tools"
|
292 |
+
print("Moving to END...")
|
293 |
+
return END
|
294 |
|
295 |
# ------------------------------
|
296 |
+
# Workflow Configuration using LangGraph
|
297 |
# ------------------------------
|
298 |
workflow = StateGraph(AgentState)
|
299 |
|
300 |
+
# Add nodes
|
301 |
workflow.add_node("agent", agent)
|
302 |
+
retrieve_node = ToolNode(tools)
|
303 |
+
workflow.add_node("retrieve", retrieve_node)
|
304 |
workflow.add_node("rewrite", rewrite)
|
305 |
+
workflow.add_node("generate", generate)
|
306 |
|
307 |
+
# Set entry point
|
308 |
workflow.set_entry_point("agent")
|
309 |
|
310 |
+
# Define transitions
|
311 |
workflow.add_conditional_edges(
|
312 |
"agent",
|
313 |
+
custom_tools_condition,
|
314 |
+
{
|
315 |
+
"tools": "retrieve",
|
316 |
+
END: END
|
317 |
+
}
|
318 |
)
|
319 |
|
320 |
workflow.add_conditional_edges(
|
321 |
"retrieve",
|
322 |
simple_grade_documents,
|
323 |
+
{
|
324 |
+
"generate": "generate",
|
325 |
+
"rewrite": "rewrite"
|
326 |
+
}
|
327 |
)
|
328 |
|
329 |
workflow.add_edge("generate", END)
|
330 |
workflow.add_edge("rewrite", "agent")
|
331 |
|
332 |
+
# Compile the workflow
|
333 |
app = workflow.compile()
|
334 |
|
335 |
# ------------------------------
|
336 |
+
# Processing Function
|
337 |
+
# ------------------------------
|
338 |
+
def process_question(user_question, app, config):
|
339 |
+
"""Process user question through the workflow"""
|
340 |
+
events = []
|
341 |
+
for event in app.stream({"messages": [("user", user_question)]}, config):
|
342 |
+
events.append(event)
|
343 |
+
return events
|
344 |
+
|
345 |
+
# ------------------------------
|
346 |
+
# Streamlit App UI (Dark Theme)
|
347 |
# ------------------------------
|
348 |
def main():
|
|
|
349 |
st.set_page_config(
|
350 |
+
page_title="AI Research & Development Assistant",
|
351 |
+
layout="wide",
|
352 |
initial_sidebar_state="expanded"
|
353 |
)
|
354 |
|
|
|
355 |
st.markdown("""
|
356 |
<style>
|
357 |
.stApp {
|
358 |
+
background-color: #1a1a1a;
|
359 |
+
color: #ffffff;
|
360 |
}
|
361 |
|
362 |
.stTextArea textarea {
|
363 |
+
background-color: #2d2d2d !important;
|
364 |
+
color: #ffffff !important;
|
|
|
365 |
}
|
366 |
|
367 |
+
.stButton > button {
|
368 |
+
background-color: #4CAF50;
|
369 |
color: white;
|
|
|
|
|
370 |
transition: all 0.3s;
|
371 |
}
|
372 |
|
373 |
+
.stButton > button:hover {
|
374 |
+
background-color: #45a049;
|
375 |
transform: scale(1.02);
|
376 |
}
|
377 |
|
378 |
+
.data-box {
|
379 |
+
background-color: #2d2d2d;
|
380 |
+
border-left: 5px solid #2196F3;
|
381 |
}
|
382 |
|
383 |
+
.dev-box {
|
384 |
+
border-left: 5px solid #4CAF50;
|
|
|
385 |
}
|
386 |
|
387 |
+
.st-expander {
|
388 |
+
background-color: #2d2d2d;
|
389 |
+
border: 1px solid #3d3d3d;
|
|
|
|
|
|
|
390 |
}
|
391 |
</style>
|
392 |
""", unsafe_allow_html=True)
|
393 |
|
|
|
394 |
with st.sidebar:
|
395 |
+
st.header("π Available Data")
|
396 |
+
st.subheader("Research Database")
|
397 |
+
for text in research_texts:
|
398 |
+
st.markdown(f'<div class="data-box research-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
+
st.subheader("Development Database")
|
401 |
+
for text in development_texts:
|
402 |
+
st.markdown(f'<div class="data-box dev-box" style="padding: 15px; margin: 10px 0; border-radius: 5px;">{text}</div>', unsafe_allow_html=True)
|
403 |
+
|
404 |
+
st.title("π€ AI Research & Development Assistant")
|
405 |
+
st.markdown("---")
|
406 |
+
|
407 |
+
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
408 |
+
|
409 |
+
col1, col2 = st.columns([1, 2])
|
410 |
+
with col1:
|
411 |
+
if st.button("π Get Answer", use_container_width=True):
|
412 |
+
if query:
|
413 |
+
try:
|
414 |
+
with st.spinner('Processing your question...'):
|
415 |
+
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
|
416 |
|
417 |
+
for event in events:
|
418 |
+
if 'agent' in event:
|
419 |
+
with st.expander("π Processing Step", expanded=True):
|
420 |
+
content = event['agent']['messages'][0].content
|
421 |
+
if "Error" in content:
|
422 |
+
st.error(content)
|
423 |
+
elif "Results:" in content:
|
424 |
+
st.markdown("### π Retrieved Documents:")
|
425 |
+
docs_start = content.find("Results:")
|
426 |
+
docs = content[docs_start:]
|
427 |
+
st.info(docs)
|
428 |
+
elif 'generate' in event:
|
429 |
+
content = event['generate']['messages'][0].content
|
430 |
+
if "Error" in content:
|
431 |
+
st.error(content)
|
432 |
+
else:
|
433 |
+
st.markdown("### β¨ Final Answer:")
|
434 |
+
st.success(content)
|
435 |
+
except Exception as e:
|
436 |
+
st.error(f"""
|
437 |
+
**Processing Error**
|
438 |
+
{str(e)}
|
439 |
+
Please check:
|
440 |
+
- API key configuration
|
441 |
+
- Account balance
|
442 |
+
- Network connection
|
443 |
+
""")
|
444 |
+
else:
|
445 |
+
st.warning("β οΈ Please enter a question first!")
|
446 |
+
|
447 |
+
with col2:
|
448 |
+
st.markdown("""
|
449 |
+
### π― How to Use
|
450 |
+
1. Enter your question in the text box
|
451 |
+
2. Click the search button
|
452 |
+
3. Review processing steps
|
453 |
+
4. See final answer
|
454 |
+
|
455 |
+
### π‘ Example Questions
|
456 |
+
- What's new in AI image recognition?
|
457 |
+
- How is Project B progressing?
|
458 |
+
- Recent machine learning trends?
|
459 |
+
""")
|
460 |
|
461 |
if __name__ == "__main__":
|
462 |
main()
|