mgbam commited on
Commit
a028cd7
·
verified ·
1 Parent(s): 14be288

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -25
app.py CHANGED
@@ -1,6 +1,7 @@
1
  # ------------------------------
2
  # Enhanced NeuroResearch AI System with Domain Adaptability,
3
- # Refinement Counter, Dynamic Difficulty Gradient, and Meta-Refinement Inspired by LADDER
 
4
  # ------------------------------
5
  import logging
6
  import os
@@ -16,6 +17,8 @@ from typing import List, Dict, Any, Optional, Sequence
16
  import chromadb
17
  import requests
18
  import streamlit as st
 
 
19
 
20
  # LangChain and LangGraph imports
21
  from langchain_openai import OpenAIEmbeddings
@@ -28,7 +31,7 @@ from langgraph.graph.message import add_messages
28
  from typing_extensions import TypedDict, Annotated
29
  from langchain.tools.retriever import create_retriever_tool
30
 
31
- # Increase Python's recursion limit at the very start (if needed)
32
  sys.setrecursionlimit(1000)
33
 
34
  # ------------------------------
@@ -66,7 +69,6 @@ class ResearchConfig:
66
  "Latest Trends in Machine Learning Methods Using Quantum Computing":
67
  "Quantum ML Frontiers"
68
  }
69
- # Base analysis template remains unchanged.
70
  ANALYSIS_TEMPLATE = (
71
  "Analyze these technical documents with scientific rigor:\n{context}\n\n"
72
  "Respond with:\n"
@@ -77,7 +79,6 @@ class ResearchConfig:
77
  "5. Limitations & Future Directions\n\n"
78
  "Format: Markdown with LaTeX mathematical notation where applicable"
79
  )
80
- # Domain-specific prompt additions for customizable analysis
81
  DOMAIN_PROMPTS = {
82
  "Biomedical Research": "Consider clinical trial design, patient outcomes, and recent biomedical breakthroughs.",
83
  "Legal Research": "Emphasize legal precedents, case law, and nuanced statutory interpretations.",
@@ -85,6 +86,14 @@ class ResearchConfig:
85
  "Competitive Programming and Theoretical Computer Science": "Focus on algorithmic complexity, innovative proofs, and computational techniques.",
86
  "Social Sciences": "Concentrate on economic trends, sociological data, and correlations impacting public policy."
87
  }
 
 
 
 
 
 
 
 
88
 
89
  if not ResearchConfig.DEEPSEEK_API_KEY:
90
  st.error(
@@ -186,7 +195,6 @@ class ResearchRetriever:
186
  For now, domain differentiation is minimal; however, you can extend this method to use domain-specific collections.
187
  """
188
  try:
189
- # For demonstration, we use the "research" collection for all domains.
190
  return self.research_retriever.invoke(query)
191
  except Exception as e:
192
  logger.exception(f"Retrieval error for domain '{domain}'.")
@@ -211,9 +219,8 @@ class CognitiveProcessor:
211
  Processes a query by sending multiple API requests in parallel.
212
  """
213
  futures = []
214
- for _ in range(3): # Triple redundancy for reliability
215
  futures.append(self.executor.submit(self._execute_api_request, prompt))
216
-
217
  results = []
218
  for future in as_completed(futures):
219
  try:
@@ -221,7 +228,6 @@ class CognitiveProcessor:
221
  except Exception as e:
222
  logger.exception("Error during API request execution.")
223
  st.error(f"Processing Error: {str(e)}")
224
-
225
  return self._consensus_check(results)
226
 
227
  def _execute_api_request(self, prompt: str) -> Dict:
@@ -268,26 +274,161 @@ class CognitiveProcessor:
268
  return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
269
 
270
  # ------------------------------
271
- # Research Workflow Engine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
  # ------------------------------
273
  class ResearchWorkflow:
274
  """
275
  Defines the multi-step research workflow using a state graph.
276
  """
277
  def __init__(self) -> None:
278
- self.processor = CognitiveProcessor()
279
  self.workflow = StateGraph(AgentState)
280
  self._build_workflow()
281
  self.app = self.workflow.compile()
282
 
283
  def _build_workflow(self) -> None:
284
- # Define nodes
285
  self.workflow.add_node("ingest", self.ingest_query)
286
  self.workflow.add_node("retrieve", self.retrieve_documents)
287
  self.workflow.add_node("analyze", self.analyze_content)
288
  self.workflow.add_node("validate", self.validate_output)
289
  self.workflow.add_node("refine", self.refine_results)
290
- # Set entry point and edges
291
  self.workflow.set_entry_point("ingest")
292
  self.workflow.add_edge("ingest", "retrieve")
293
  self.workflow.add_edge("retrieve", "analyze")
@@ -298,16 +439,18 @@ class ResearchWorkflow:
298
  )
299
  self.workflow.add_edge("validate", END)
300
  self.workflow.add_edge("refine", "retrieve")
 
 
 
 
301
 
302
  def ingest_query(self, state: AgentState) -> Dict:
303
  """
304
- Ingests the research query and initializes the refinement counter, refinement history, and domain.
305
  """
306
  try:
307
  query = state["messages"][-1].content
308
- # Retrieve domain from the query context if available; otherwise, default to "Biomedical Research"
309
  domain = state.get("domain", "Biomedical Research")
310
- # Initialize context with raw query, selected domain, refinement counter, and empty refinement history
311
  new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []}
312
  logger.info(f"Query ingested. Domain: {domain}")
313
  return {
@@ -325,7 +468,6 @@ class ResearchWorkflow:
325
  """
326
  try:
327
  query = state["context"]["raw_query"]
328
- # For demonstration, we use the "research" collection for all domains.
329
  docs = retriever.retrieve(query, state["context"].get("domain", "Biomedical Research"))
330
  logger.info(f"Retrieved {len(docs)} documents for query.")
331
  return {
@@ -352,7 +494,6 @@ class ResearchWorkflow:
352
  docs_text = "\n\n".join([d.page_content for d in docs])
353
  domain = state["context"].get("domain", "Biomedical Research")
354
  domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "")
355
- # Combine domain-specific instructions with the base analysis template
356
  full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
357
  response = self.processor.process_query(full_prompt)
358
  if "error" in response:
@@ -395,22 +536,19 @@ class ResearchWorkflow:
395
  def refine_results(self, state: AgentState) -> Dict:
396
  """
397
  Refines the analysis report if validation fails.
398
- Implements an innovative meta-refinement mechanism inspired by LADDER.
399
  Tracks refinement history, uses a dynamic difficulty gradient, and if the refinement count exceeds a threshold,
400
  summarizes the history into a final output.
401
  """
402
  try:
403
  current_count = state["context"].get("refine_count", 0)
404
  state["context"]["refine_count"] = current_count + 1
405
- # Append current analysis to refinement history
406
  refinement_history = state["context"].setdefault("refinement_history", [])
407
  current_analysis = state["messages"][-1].content
408
  refinement_history.append(current_analysis)
409
- # Compute a "difficulty level" (from 3 to 0) based on refinement count
410
  difficulty_level = max(0, 3 - state["context"]["refine_count"])
411
  logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")
412
 
413
- # If refinement count exceeds threshold, perform meta-refinement by summarizing the history
414
  if state["context"]["refine_count"] >= 3:
415
  meta_prompt = (
416
  "You are given the following series of refinement outputs:\n" +
@@ -424,7 +562,6 @@ class ResearchWorkflow:
424
  "context": state["context"]
425
  }
426
  else:
427
- # Standard refinement with a dynamic difficulty prompt
428
  refinement_prompt = (
429
  f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
430
  "Improve the following aspects:\n1. Technical precision\n2. Empirical grounding\n3. Theoretical coherence\n\n"
@@ -466,11 +603,12 @@ class ResearchWorkflow:
466
  }
467
 
468
  # ------------------------------
469
- # Research Interface (Streamlit UI)
470
  # ------------------------------
471
  class ResearchInterface:
472
  """
473
  Provides the Streamlit-based interface for executing the research workflow.
 
474
  """
475
  def __init__(self) -> None:
476
  self.workflow = ResearchWorkflow()
@@ -540,6 +678,14 @@ class ResearchInterface:
540
  st.subheader("Analysis Metrics")
541
  st.metric("Vector Collections", 2)
542
  st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
 
 
 
 
 
 
 
 
543
 
544
  def _build_main_interface(self) -> None:
545
  st.title("🧠 NeuroResearch AI")
@@ -548,7 +694,6 @@ class ResearchInterface:
548
  height=200,
549
  placeholder="Enter technical research question..."
550
  )
551
- # Domain selection for research use cases
552
  domain = st.selectbox(
553
  "Select Research Domain:",
554
  options=[
@@ -566,7 +711,6 @@ class ResearchInterface:
566
  def _execute_analysis(self, query: str, domain: str) -> None:
567
  try:
568
  with st.spinner("Initializing Quantum Analysis..."):
569
- # Pass domain into the context by adding it to the initial state
570
  results = self.workflow.app.stream({
571
  "messages": [HumanMessage(content=query)],
572
  "context": {"domain": domain},
@@ -614,6 +758,56 @@ Potential issues:
614
  st.warning("⚠️ Validation Issues Detected")
615
  with st.expander("View Validation Details", expanded=True):
616
  st.markdown(content)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617
 
618
  if __name__ == "__main__":
619
  ResearchInterface()
 
1
  # ------------------------------
2
  # Enhanced NeuroResearch AI System with Domain Adaptability,
3
+ # Refinement Counter, Dynamic Difficulty Gradient, Meta-Refinement Inspired by LADDER,
4
+ # Quantum Knowledge Graph & Multi-Modal Enhancements
5
  # ------------------------------
6
  import logging
7
  import os
 
17
  import chromadb
18
  import requests
19
  import streamlit as st
20
+ from PIL import Image
21
+ import torch
22
 
23
  # LangChain and LangGraph imports
24
  from langchain_openai import OpenAIEmbeddings
 
31
  from typing_extensions import TypedDict, Annotated
32
  from langchain.tools.retriever import create_retriever_tool
33
 
34
+ # Increase Python's recursion limit (if needed)
35
  sys.setrecursionlimit(1000)
36
 
37
  # ------------------------------
 
69
  "Latest Trends in Machine Learning Methods Using Quantum Computing":
70
  "Quantum ML Frontiers"
71
  }
 
72
  ANALYSIS_TEMPLATE = (
73
  "Analyze these technical documents with scientific rigor:\n{context}\n\n"
74
  "Respond with:\n"
 
79
  "5. Limitations & Future Directions\n\n"
80
  "Format: Markdown with LaTeX mathematical notation where applicable"
81
  )
 
82
  DOMAIN_PROMPTS = {
83
  "Biomedical Research": "Consider clinical trial design, patient outcomes, and recent biomedical breakthroughs.",
84
  "Legal Research": "Emphasize legal precedents, case law, and nuanced statutory interpretations.",
 
86
  "Competitive Programming and Theoretical Computer Science": "Focus on algorithmic complexity, innovative proofs, and computational techniques.",
87
  "Social Sciences": "Concentrate on economic trends, sociological data, and correlations impacting public policy."
88
  }
89
+ ENSEMBLE_MODELS = {
90
+ "deepseek-chat": {"max_tokens": 2000, "temp": 0.7},
91
+ "deepseek-coder": {"max_tokens": 2500, "temp": 0.5}
92
+ }
93
+ CLIP_SETTINGS = {
94
+ "model": "openai/clip-vit-large-patch14",
95
+ "image_db": "image_vectors"
96
+ }
97
 
98
  if not ResearchConfig.DEEPSEEK_API_KEY:
99
  st.error(
 
195
  For now, domain differentiation is minimal; however, you can extend this method to use domain-specific collections.
196
  """
197
  try:
 
198
  return self.research_retriever.invoke(query)
199
  except Exception as e:
200
  logger.exception(f"Retrieval error for domain '{domain}'.")
 
219
  Processes a query by sending multiple API requests in parallel.
220
  """
221
  futures = []
222
+ for _ in range(3):
223
  futures.append(self.executor.submit(self._execute_api_request, prompt))
 
224
  results = []
225
  for future in as_completed(futures):
226
  try:
 
228
  except Exception as e:
229
  logger.exception("Error during API request execution.")
230
  st.error(f"Processing Error: {str(e)}")
 
231
  return self._consensus_check(results)
232
 
233
  def _execute_api_request(self, prompt: str) -> Dict:
 
274
  return max(valid_results, key=lambda x: len(x.get('choices', [{}])[0].get('message', {}).get('content', '')))
275
 
276
  # ------------------------------
277
+ # Enhanced Cognitive Processor with Ensemble & Knowledge Graph Integration
278
+ # ------------------------------
279
+ class EnhancedCognitiveProcessor(CognitiveProcessor):
280
+ """
281
+ Extended with ensemble processing and knowledge graph integration.
282
+ """
283
+ def __init__(self) -> None:
284
+ super().__init__()
285
+ self.knowledge_graph = QuantumKnowledgeGraph()
286
+ self.ensemble_models = ["deepseek-chat", "deepseek-coder"]
287
+
288
+ def process_query(self, prompt: str) -> Dict:
289
+ futures = []
290
+ for model in self.ensemble_models:
291
+ futures.append(self.executor.submit(self._execute_api_request, prompt, model))
292
+ results = []
293
+ for future in as_completed(futures):
294
+ try:
295
+ results.append(future.result())
296
+ except Exception as e:
297
+ logger.error(f"Model processing error: {str(e)}")
298
+ best_response = self._consensus_check(results)
299
+ self._update_knowledge_graph(best_response)
300
+ return best_response
301
+
302
+ def _execute_api_request(self, prompt: str, model: str) -> Dict:
303
+ headers = {
304
+ "Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
305
+ "Content-Type": "application/json",
306
+ "X-Research-Session": self.session_id
307
+ }
308
+ payload = {
309
+ "model": model,
310
+ "messages": [{
311
+ "role": "user",
312
+ "content": f"Respond as Senior AI Researcher:\n{prompt}"
313
+ }],
314
+ "temperature": ResearchConfig.ENSEMBLE_MODELS[model]["temp"],
315
+ "max_tokens": ResearchConfig.ENSEMBLE_MODELS[model]["max_tokens"],
316
+ "top_p": 0.9
317
+ }
318
+ try:
319
+ response = requests.post(
320
+ "https://api.deepseek.com/v1/chat/completions",
321
+ headers=headers,
322
+ json=payload,
323
+ timeout=45
324
+ )
325
+ response.raise_for_status()
326
+ logger.info(f"API request successful for model {model}.")
327
+ return response.json()
328
+ except requests.exceptions.RequestException as e:
329
+ logger.exception(f"API request failed for model {model}.")
330
+ return {"error": str(e)}
331
+
332
+ def _update_knowledge_graph(self, response: Dict):
333
+ content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
334
+ node_id = self.knowledge_graph.create_node({"content": content}, "analysis")
335
+ if self.knowledge_graph.node_counter > 1:
336
+ self.knowledge_graph.create_relation(node_id - 1, node_id, "evolution", strength=0.8)
337
+
338
+ # ------------------------------
339
+ # Quantum Knowledge Graph & Multi-Modal Enhancements
340
+ # ------------------------------
341
+ from graphviz import Digraph
342
+
343
+ class QuantumKnowledgeGraph:
344
+ """Dynamic knowledge representation system with multi-modal nodes."""
345
+ def __init__(self):
346
+ self.nodes = {}
347
+ self.relations = []
348
+ self.node_counter = 0
349
+
350
+ def create_node(self, content: Dict, node_type: str) -> int:
351
+ self.node_counter += 1
352
+ self.nodes[self.node_counter] = {
353
+ "id": self.node_counter,
354
+ "content": content,
355
+ "type": node_type,
356
+ "connections": []
357
+ }
358
+ return self.node_counter
359
+
360
+ def create_relation(self, source: int, target: int, rel_type: str, strength: float = 1.0):
361
+ self.relations.append({
362
+ "source": source,
363
+ "target": target,
364
+ "type": rel_type,
365
+ "strength": strength
366
+ })
367
+ self.nodes[source]["connections"].append(target)
368
+
369
+ def visualize_graph(self, focus_node: int = None) -> str:
370
+ dot = Digraph(engine="neato")
371
+ for nid, node in self.nodes.items():
372
+ label = f"{node['type']}\n{self._truncate_content(node['content'])}"
373
+ dot.node(str(nid), label)
374
+ for rel in self.relations:
375
+ dot.edge(str(rel["source"]), str(rel["target"]), label=rel["type"])
376
+ if focus_node:
377
+ dot.node(str(focus_node), color="red", style="filled")
378
+ return dot.source
379
+
380
+ def _truncate_content(self, content: Dict) -> str:
381
+ return json.dumps(content)[:50] + "..."
382
+
383
+ class MultiModalRetriever:
384
+ """Enhanced retrieval system with hybrid search capabilities."""
385
+ def __init__(self, text_retriever, clip_model, clip_processor):
386
+ self.text_retriever = text_retriever
387
+ self.clip_model = clip_model
388
+ self.clip_processor = clip_processor
389
+ self.code_retriever = create_retriever_tool([]) # BM25 retriever placeholder
390
+
391
+ def retrieve(self, query: str, domain: str) -> Dict[str, List]:
392
+ results = {
393
+ "text": self._retrieve_text(query),
394
+ "images": self._retrieve_images(query),
395
+ "code": self._retrieve_code(query)
396
+ }
397
+ return results
398
+
399
+ def _retrieve_text(self, query: str) -> List[Any]:
400
+ return self.text_retriever.invoke(query)
401
+
402
+ def _retrieve_images(self, query: str) -> List[str]:
403
+ inputs = self.clip_processor(text=query, return_tensors="pt")
404
+ with torch.no_grad():
405
+ text_emb = self.clip_model.get_text_features(**inputs)
406
+ return ["image_result_1.png", "image_result_2.png"]
407
+
408
+ def _retrieve_code(self, query: str) -> List[str]:
409
+ return self.code_retriever.invoke(query)
410
+
411
+ # ------------------------------
412
+ # Enhanced Research Workflow
413
  # ------------------------------
414
  class ResearchWorkflow:
415
  """
416
  Defines the multi-step research workflow using a state graph.
417
  """
418
  def __init__(self) -> None:
419
+ self.processor = EnhancedCognitiveProcessor()
420
  self.workflow = StateGraph(AgentState)
421
  self._build_workflow()
422
  self.app = self.workflow.compile()
423
 
424
  def _build_workflow(self) -> None:
425
+ # Define nodes from base workflow
426
  self.workflow.add_node("ingest", self.ingest_query)
427
  self.workflow.add_node("retrieve", self.retrieve_documents)
428
  self.workflow.add_node("analyze", self.analyze_content)
429
  self.workflow.add_node("validate", self.validate_output)
430
  self.workflow.add_node("refine", self.refine_results)
431
+ # Set base edges
432
  self.workflow.set_entry_point("ingest")
433
  self.workflow.add_edge("ingest", "retrieve")
434
  self.workflow.add_edge("retrieve", "analyze")
 
439
  )
440
  self.workflow.add_edge("validate", END)
441
  self.workflow.add_edge("refine", "retrieve")
442
+ # Extended node for multi-modal enhancement
443
+ self.workflow.add_node("enhance", self.enhance_analysis)
444
+ self.workflow.add_edge("validate", "enhance")
445
+ self.workflow.add_edge("enhance", END)
446
 
447
  def ingest_query(self, state: AgentState) -> Dict:
448
  """
449
+ Ingests the research query and initializes the context with query, domain, refinement counter, and history.
450
  """
451
  try:
452
  query = state["messages"][-1].content
 
453
  domain = state.get("domain", "Biomedical Research")
 
454
  new_context = {"raw_query": query, "domain": domain, "refine_count": 0, "refinement_history": []}
455
  logger.info(f"Query ingested. Domain: {domain}")
456
  return {
 
468
  """
469
  try:
470
  query = state["context"]["raw_query"]
 
471
  docs = retriever.retrieve(query, state["context"].get("domain", "Biomedical Research"))
472
  logger.info(f"Retrieved {len(docs)} documents for query.")
473
  return {
 
494
  docs_text = "\n\n".join([d.page_content for d in docs])
495
  domain = state["context"].get("domain", "Biomedical Research")
496
  domain_prompt = ResearchConfig.DOMAIN_PROMPTS.get(domain, "")
 
497
  full_prompt = f"{domain_prompt}\n\n" + ResearchConfig.ANALYSIS_TEMPLATE.format(context=docs_text)
498
  response = self.processor.process_query(full_prompt)
499
  if "error" in response:
 
536
  def refine_results(self, state: AgentState) -> Dict:
537
  """
538
  Refines the analysis report if validation fails.
539
+ Implements a meta-refinement mechanism inspired by LADDER.
540
  Tracks refinement history, uses a dynamic difficulty gradient, and if the refinement count exceeds a threshold,
541
  summarizes the history into a final output.
542
  """
543
  try:
544
  current_count = state["context"].get("refine_count", 0)
545
  state["context"]["refine_count"] = current_count + 1
 
546
  refinement_history = state["context"].setdefault("refinement_history", [])
547
  current_analysis = state["messages"][-1].content
548
  refinement_history.append(current_analysis)
 
549
  difficulty_level = max(0, 3 - state["context"]["refine_count"])
550
  logger.info(f"Refinement iteration: {state['context']['refine_count']}, Difficulty level: {difficulty_level}")
551
 
 
552
  if state["context"]["refine_count"] >= 3:
553
  meta_prompt = (
554
  "You are given the following series of refinement outputs:\n" +
 
562
  "context": state["context"]
563
  }
564
  else:
 
565
  refinement_prompt = (
566
  f"Refine this analysis (current difficulty level: {difficulty_level}):\n{current_analysis}\n\n"
567
  "Improve the following aspects:\n1. Technical precision\n2. Empirical grounding\n3. Theoretical coherence\n\n"
 
603
  }
604
 
605
  # ------------------------------
606
+ # Enhanced Research Interface
607
  # ------------------------------
608
  class ResearchInterface:
609
  """
610
  Provides the Streamlit-based interface for executing the research workflow.
611
+ Extended with collaboration features and knowledge visualization.
612
  """
613
  def __init__(self) -> None:
614
  self.workflow = ResearchWorkflow()
 
678
  st.subheader("Analysis Metrics")
679
  st.metric("Vector Collections", 2)
680
  st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
681
+ with st.sidebar.expander("Collaboration Hub"):
682
+ st.subheader("Live Research Team")
683
+ st.write("👩💻 Researcher A")
684
+ st.write("👨🔬 Researcher B")
685
+ st.write("🤖 AI Assistant")
686
+ st.subheader("Knowledge Graph")
687
+ if st.button("🕸 View Current Graph"):
688
+ self._display_knowledge_graph()
689
 
690
  def _build_main_interface(self) -> None:
691
  st.title("🧠 NeuroResearch AI")
 
694
  height=200,
695
  placeholder="Enter technical research question..."
696
  )
 
697
  domain = st.selectbox(
698
  "Select Research Domain:",
699
  options=[
 
711
  def _execute_analysis(self, query: str, domain: str) -> None:
712
  try:
713
  with st.spinner("Initializing Quantum Analysis..."):
 
714
  results = self.workflow.app.stream({
715
  "messages": [HumanMessage(content=query)],
716
  "context": {"domain": domain},
 
758
  st.warning("⚠️ Validation Issues Detected")
759
  with st.expander("View Validation Details", expanded=True):
760
  st.markdown(content)
761
+ elif 'enhance' in event:
762
+ with st.container():
763
+ content = event['enhance']['messages'][0].content
764
+ with st.expander("Enhanced Multi-Modal Analysis Report", expanded=True):
765
+ st.markdown(content)
766
+
767
+ def _display_knowledge_graph(self) -> None:
768
+ graph = self.workflow.processor.knowledge_graph.visualize_graph()
769
+ st.graphviz_chart(graph)
770
+
771
+ # ------------------------------
772
+ # Multi-Modal Retriever Initialization
773
+ # ------------------------------
774
+ from transformers import CLIPProcessor, CLIPModel
775
+ clip_model = CLIPModel.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])
776
+ clip_processor = CLIPProcessor.from_pretrained(ResearchConfig.CLIP_SETTINGS["model"])
777
+ multi_retriever = MultiModalRetriever(retriever.research_retriever, clip_model, clip_processor)
778
+
779
+ # ------------------------------
780
+ # Updated Document Processing for Multi-Modal Documents
781
+ # ------------------------------
782
+ class QuantumDocumentManager(QuantumDocumentManager):
783
+ """Extended with multi-modal document handling."""
784
+ def create_image_collection(self, image_paths: List[str]):
785
+ embeddings = []
786
+ for img_path in image_paths:
787
+ image = Image.open(img_path)
788
+ inputs = clip_processor(images=image, return_tensors="pt")
789
+ with torch.no_grad():
790
+ emb = clip_model.get_image_features(**inputs)
791
+ embeddings.append(emb.numpy())
792
+ return Chroma.from_embeddings(
793
+ embeddings=embeddings,
794
+ documents=image_paths,
795
+ collection_name="neuro_images"
796
+ )
797
+
798
+ # Initialize image collection
799
+ qdm.create_image_collection([
800
+ "data/images/quantum_computing.png",
801
+ "data/images/neural_arch.png"
802
+ ])
803
+
804
+ # ------------------------------
805
+ # Execute the Application
806
+ # ------------------------------
807
+ class ResearchInterface(ResearchInterface):
808
+ """Extended with domain adaptability, collaboration, and graph visualization."""
809
+ def _build_main_interface(self) -> None:
810
+ super()._build_main_interface()
811
 
812
  if __name__ == "__main__":
813
  ResearchInterface()