Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
# Advanced Hugging Face Space β Multi-Agent Chatbot
|
3 |
+
#
|
4 |
+
# Developed with a forward-looking vision, inspired by Bill Gatesβ drive for technological innovation.
|
5 |
+
# This app leverages LangGraph, DeepSeek-R1 (via text-based function calling), and Agentic RAG to deliver
|
6 |
+
# a multi-agent chatbot capable of autonomous reasoning and action.
|
7 |
+
#
|
8 |
+
# To deploy:
|
9 |
+
# 1. Add your API keys to the Hugging Face Space secrets (e.g., DEEPSEEK_API_KEY).
|
10 |
+
# 2. Install dependencies via a requirements.txt file.
|
11 |
+
# 3. Enjoy a robust and scalable AI assistant for research and development.
|
12 |
+
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
import logging
|
16 |
+
import streamlit as st
|
17 |
+
import requests
|
18 |
+
from typing import Sequence
|
19 |
+
from typing_extensions import TypedDict, Annotated
|
20 |
+
|
21 |
+
from langchain_openai import OpenAIEmbeddings
|
22 |
+
from langchain_community.vectorstores import Chroma
|
23 |
+
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
24 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
25 |
+
from langchain.tools.retriever import create_retriever_tool
|
26 |
+
from langgraph.graph import END, StateGraph, START
|
27 |
+
from langgraph.prebuilt import ToolNode
|
28 |
+
from langgraph.graph.message import add_messages
|
29 |
+
|
30 |
+
# Configure logging for better observability
|
31 |
+
logging.basicConfig(level=logging.INFO)
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
# --- Dummy Data Setup ---
|
35 |
+
research_texts = [
|
36 |
+
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
37 |
+
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
38 |
+
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
39 |
+
]
|
40 |
+
|
41 |
+
development_texts = [
|
42 |
+
"Project A: UI Design Completed, API Integration in Progress",
|
43 |
+
"Project B: Testing New Feature X, Bug Fixes Needed",
|
44 |
+
"Product Y: In the Performance Optimization Stage Before Release"
|
45 |
+
]
|
46 |
+
|
47 |
+
# --- Preprocessing & Embeddings ---
|
48 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
|
49 |
+
research_docs = splitter.create_documents(research_texts)
|
50 |
+
development_docs = splitter.create_documents(development_texts)
|
51 |
+
|
52 |
+
embeddings = OpenAIEmbeddings(
|
53 |
+
model="text-embedding-3-large"
|
54 |
+
)
|
55 |
+
|
56 |
+
research_vectorstore = Chroma.from_documents(
|
57 |
+
documents=research_docs,
|
58 |
+
embedding=embeddings,
|
59 |
+
collection_name="research_collection"
|
60 |
+
)
|
61 |
+
development_vectorstore = Chroma.from_documents(
|
62 |
+
documents=development_docs,
|
63 |
+
embedding=embeddings,
|
64 |
+
collection_name="development_collection"
|
65 |
+
)
|
66 |
+
|
67 |
+
research_retriever = research_vectorstore.as_retriever()
|
68 |
+
development_retriever = development_vectorstore.as_retriever()
|
69 |
+
|
70 |
+
research_tool = create_retriever_tool(
|
71 |
+
research_retriever,
|
72 |
+
"research_db_tool",
|
73 |
+
"Search information from the research database."
|
74 |
+
)
|
75 |
+
development_tool = create_retriever_tool(
|
76 |
+
development_retriever,
|
77 |
+
"development_db_tool",
|
78 |
+
"Search information from the development database."
|
79 |
+
)
|
80 |
+
tools = [research_tool, development_tool]
|
81 |
+
|
82 |
+
# --- Agent and Workflow Functions ---
|
83 |
+
class AgentState(TypedDict):
|
84 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
|
85 |
+
|
86 |
+
def agent(state: AgentState):
|
87 |
+
logger.info("Agent invoked")
|
88 |
+
messages = state["messages"]
|
89 |
+
user_message = messages[0][1] if isinstance(messages[0], tuple) else messages[0].content
|
90 |
+
|
91 |
+
prompt = f"""Given this user question: "{user_message}"
|
92 |
+
If it's about research or academic topics, respond EXACTLY in this format:
|
93 |
+
SEARCH_RESEARCH: <search terms>
|
94 |
+
|
95 |
+
If it's about development status, respond EXACTLY in this format:
|
96 |
+
SEARCH_DEV: <search terms>
|
97 |
+
|
98 |
+
Otherwise, just answer directly.
|
99 |
+
"""
|
100 |
+
headers = {
|
101 |
+
"Accept": "application/json",
|
102 |
+
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
|
103 |
+
"Content-Type": "application/json"
|
104 |
+
}
|
105 |
+
data = {
|
106 |
+
"model": "deepseek-chat",
|
107 |
+
"messages": [{"role": "user", "content": prompt}],
|
108 |
+
"temperature": 0.7,
|
109 |
+
"max_tokens": 1024
|
110 |
+
}
|
111 |
+
|
112 |
+
response = requests.post(
|
113 |
+
"https://api.deepseek.com/v1/chat/completions",
|
114 |
+
headers=headers,
|
115 |
+
json=data,
|
116 |
+
verify=False
|
117 |
+
)
|
118 |
+
if response.status_code == 200:
|
119 |
+
response_text = response.json()['choices'][0]['message']['content']
|
120 |
+
logger.info(f"DeepSeek response: {response_text}")
|
121 |
+
if "SEARCH_RESEARCH:" in response_text:
|
122 |
+
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
|
123 |
+
results = research_retriever.invoke(query)
|
124 |
+
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
125 |
+
elif "SEARCH_DEV:" in response_text:
|
126 |
+
query = response_text.split("SEARCH_DEV:")[1].strip()
|
127 |
+
results = development_retriever.invoke(query)
|
128 |
+
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
|
129 |
+
else:
|
130 |
+
return {"messages": [AIMessage(content=response_text)]}
|
131 |
+
else:
|
132 |
+
error_msg = f"DeepSeek API call failed: {response.text}"
|
133 |
+
logger.error(error_msg)
|
134 |
+
raise Exception(error_msg)
|
135 |
+
|
136 |
+
def simple_grade_documents(state: AgentState):
|
137 |
+
last_message = state["messages"][-1]
|
138 |
+
logger.info(f"Grading message: {last_message.content}")
|
139 |
+
if "Results: [Document" in last_message.content:
|
140 |
+
return "generate"
|
141 |
+
else:
|
142 |
+
return "rewrite"
|
143 |
+
|
144 |
+
def generate(state: AgentState):
|
145 |
+
logger.info("Generating final answer")
|
146 |
+
messages = state["messages"]
|
147 |
+
question = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
|
148 |
+
last_message = messages[-1]
|
149 |
+
docs = ""
|
150 |
+
if "Results: [" in last_message.content:
|
151 |
+
docs = last_message.content[last_message.content.find("Results: ["):]
|
152 |
+
headers = {
|
153 |
+
"Accept": "application/json",
|
154 |
+
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
|
155 |
+
"Content-Type": "application/json"
|
156 |
+
}
|
157 |
+
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
|
158 |
+
Question: {question}
|
159 |
+
Documents: {docs}
|
160 |
+
Focus on extracting and synthesizing the key findings from the research papers.
|
161 |
+
"""
|
162 |
+
data = {
|
163 |
+
"model": "deepseek-chat",
|
164 |
+
"messages": [{"role": "user", "content": prompt}],
|
165 |
+
"temperature": 0.7,
|
166 |
+
"max_tokens": 1024
|
167 |
+
}
|
168 |
+
response = requests.post(
|
169 |
+
"https://api.deepseek.com/v1/chat/completions",
|
170 |
+
headers=headers,
|
171 |
+
json=data,
|
172 |
+
verify=False
|
173 |
+
)
|
174 |
+
if response.status_code == 200:
|
175 |
+
response_text = response.json()['choices'][0]['message']['content']
|
176 |
+
return {"messages": [AIMessage(content=response_text)]}
|
177 |
+
else:
|
178 |
+
error_msg = f"DeepSeek API generate call failed: {response.text}"
|
179 |
+
logger.error(error_msg)
|
180 |
+
raise Exception(error_msg)
|
181 |
+
|
182 |
+
def rewrite(state: AgentState):
|
183 |
+
logger.info("Rewriting question")
|
184 |
+
original_question = state["messages"][0].content if state["messages"] else "N/A"
|
185 |
+
headers = {
|
186 |
+
"Accept": "application/json",
|
187 |
+
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
|
188 |
+
"Content-Type": "application/json"
|
189 |
+
}
|
190 |
+
data = {
|
191 |
+
"model": "deepseek-chat",
|
192 |
+
"messages": [{"role": "user", "content": f"Rewrite this question to be more specific and clearer: {original_question}"}],
|
193 |
+
"temperature": 0.7,
|
194 |
+
"max_tokens": 1024
|
195 |
+
}
|
196 |
+
response = requests.post(
|
197 |
+
"https://api.deepseek.com/v1/chat/completions",
|
198 |
+
headers=headers,
|
199 |
+
json=data,
|
200 |
+
verify=False
|
201 |
+
)
|
202 |
+
if response.status_code == 200:
|
203 |
+
response_text = response.json()['choices'][0]['message']['content']
|
204 |
+
return {"messages": [AIMessage(content=response_text)]}
|
205 |
+
else:
|
206 |
+
error_msg = f"DeepSeek API rewrite call failed: {response.text}"
|
207 |
+
logger.error(error_msg)
|
208 |
+
raise Exception(error_msg)
|
209 |
+
|
210 |
+
tools_pattern = re.compile(r"Action: .*")
|
211 |
+
def custom_tools_condition(state: AgentState):
|
212 |
+
last_message = state["messages"][-1]
|
213 |
+
if tools_pattern.match(last_message.content):
|
214 |
+
return "tools"
|
215 |
+
return END
|
216 |
+
|
217 |
+
# Build the workflow using LangGraph's StateGraph
|
218 |
+
workflow = StateGraph(AgentState)
|
219 |
+
workflow.add_node("agent", agent)
|
220 |
+
retrieve_node = ToolNode(tools)
|
221 |
+
workflow.add_node("retrieve", retrieve_node)
|
222 |
+
workflow.add_node("rewrite", rewrite)
|
223 |
+
workflow.add_node("generate", generate)
|
224 |
+
workflow.add_edge(START, "agent")
|
225 |
+
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
|
226 |
+
workflow.add_conditional_edges("retrieve", simple_grade_documents)
|
227 |
+
workflow.add_edge("generate", END)
|
228 |
+
workflow.add_edge("rewrite", "agent")
|
229 |
+
app_workflow = workflow.compile()
|
230 |
+
|
231 |
+
def process_question(user_question, app, config):
|
232 |
+
events = []
|
233 |
+
for event in app.stream({"messages": [("user", user_question)]}, config):
|
234 |
+
events.append(event)
|
235 |
+
return events
|
236 |
+
|
237 |
+
# --- Streamlit UI ---
|
238 |
+
def main():
|
239 |
+
st.set_page_config(page_title="Advanced AI R&D Assistant", layout="wide", initial_sidebar_state="expanded")
|
240 |
+
st.markdown(
|
241 |
+
"""
|
242 |
+
<style>
|
243 |
+
.stApp { background-color: #f8f9fa; }
|
244 |
+
.stButton > button { width: 100%; margin-top: 20px; }
|
245 |
+
.data-box { padding: 20px; border-radius: 10px; margin: 10px 0; }
|
246 |
+
.research-box { background-color: #e3f2fd; border-left: 5px solid #1976d2; }
|
247 |
+
.dev-box { background-color: #e8f5e9; border-left: 5px solid #43a047; }
|
248 |
+
</style>
|
249 |
+
""", unsafe_allow_html=True
|
250 |
+
)
|
251 |
+
|
252 |
+
# Sidebar: Display available data
|
253 |
+
with st.sidebar:
|
254 |
+
st.header("π Available Data")
|
255 |
+
st.subheader("Research Database")
|
256 |
+
for text in research_texts:
|
257 |
+
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
|
258 |
+
st.subheader("Development Database")
|
259 |
+
for text in development_texts:
|
260 |
+
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
|
261 |
+
|
262 |
+
st.title("π€ Advanced AI R&D Assistant")
|
263 |
+
st.markdown("---")
|
264 |
+
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
|
265 |
+
|
266 |
+
col1, col2 = st.columns([1, 2])
|
267 |
+
with col1:
|
268 |
+
if st.button("π Get Answer", use_container_width=True):
|
269 |
+
if query:
|
270 |
+
with st.spinner('Processing your question...'):
|
271 |
+
events = process_question(query, app_workflow, {"configurable": {"thread_id": "1"}})
|
272 |
+
for event in events:
|
273 |
+
if 'agent' in event:
|
274 |
+
with st.expander("π Processing Step", expanded=True):
|
275 |
+
content = event['agent']['messages'][0].content
|
276 |
+
if "Results:" in content:
|
277 |
+
st.markdown("### π Retrieved Documents:")
|
278 |
+
docs = content[content.find("Results:"):]
|
279 |
+
st.info(docs)
|
280 |
+
elif 'generate' in event:
|
281 |
+
st.markdown("### β¨ Final Answer:")
|
282 |
+
st.success(event['generate']['messages'][0].content)
|
283 |
+
else:
|
284 |
+
st.warning("β οΈ Please enter a question first!")
|
285 |
+
with col2:
|
286 |
+
st.markdown(
|
287 |
+
"""
|
288 |
+
### π― How to Use
|
289 |
+
1. Type your question in the text box.
|
290 |
+
2. Click "Get Answer" to process.
|
291 |
+
3. View retrieved documents and the final answer.
|
292 |
+
|
293 |
+
### π‘ Example Questions
|
294 |
+
- What are the latest advancements in AI research?
|
295 |
+
- What is the status of Project A?
|
296 |
+
- What are the current trends in machine learning?
|
297 |
+
"""
|
298 |
+
)
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
main()
|