Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,30 +3,29 @@
|
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
8 |
from langgraph.graph import END, StateGraph
|
9 |
-
from langgraph.prebuilt import ToolNode
|
10 |
-
from langgraph.graph.message import add_messages
|
11 |
from typing_extensions import TypedDict, Annotated
|
12 |
from typing import Sequence, Dict, List, Optional, Any
|
13 |
import chromadb
|
14 |
-
import
|
15 |
import os
|
16 |
import streamlit as st
|
17 |
import requests
|
18 |
import hashlib
|
19 |
-
import
|
20 |
import time
|
21 |
-
from langchain.tools.retriever import create_retriever_tool
|
22 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
23 |
from datetime import datetime
|
|
|
24 |
|
25 |
# ------------------------------
|
26 |
# State Schema Definition
|
27 |
# ------------------------------
|
28 |
class AgentState(TypedDict):
|
29 |
-
messages: Annotated[Sequence[AIMessage | HumanMessage
|
30 |
context: Dict[str, Any]
|
31 |
metadata: Dict[str, Any]
|
32 |
|
@@ -40,37 +39,56 @@ class ResearchConfig:
|
|
40 |
CHUNK_OVERLAP = 64
|
41 |
MAX_CONCURRENT_REQUESTS = 5
|
42 |
EMBEDDING_DIMENSIONS = 1536
|
|
|
|
|
43 |
DOCUMENT_MAP = {
|
44 |
-
"
|
45 |
-
"CV-Transformer
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
}
|
51 |
-
|
|
|
52 |
{context}
|
53 |
|
54 |
-
Respond with:
|
55 |
-
1. Key Technical Contributions (bullet points)
|
56 |
-
2. Novel Methodologies
|
57 |
-
3. Empirical Results (
|
58 |
-
4.
|
59 |
-
5. Limitations
|
60 |
|
61 |
-
|
62 |
-
"""
|
63 |
|
64 |
-
# Validation
|
65 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
66 |
-
st.error("""**
|
67 |
-
1.
|
68 |
-
2.
|
69 |
3. Rebuild deployment""")
|
70 |
st.stop()
|
71 |
|
72 |
# ------------------------------
|
73 |
-
#
|
74 |
# ------------------------------
|
75 |
class QuantumDocumentManager:
|
76 |
def __init__(self):
|
@@ -80,17 +98,29 @@ class QuantumDocumentManager:
|
|
80 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
81 |
)
|
82 |
|
83 |
-
def create_collection(self,
|
84 |
splitter = RecursiveCharacterTextSplitter(
|
85 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
86 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
87 |
separators=["\n\n", "\n", "|||"]
|
88 |
)
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return Chroma.from_documents(
|
91 |
documents=docs,
|
92 |
embedding=self.embeddings,
|
93 |
-
client=self.client,
|
94 |
collection_name=collection_name,
|
95 |
ids=[self._document_id(doc.page_content) for doc in docs]
|
96 |
)
|
@@ -98,78 +128,49 @@ class QuantumDocumentManager:
|
|
98 |
def _document_id(self, content: str) -> str:
|
99 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
100 |
|
101 |
-
# Initialize document
|
102 |
qdm = QuantumDocumentManager()
|
103 |
-
research_docs = qdm.create_collection(
|
104 |
-
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
|
105 |
-
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
|
106 |
-
"Latest Trends in Machine Learning Methods Using Quantum Computing"
|
107 |
-
], "research")
|
108 |
-
|
109 |
-
development_docs = qdm.create_collection([
|
110 |
-
"Project A: UI Design Completed, API Integration in Progress",
|
111 |
-
"Project B: Testing New Feature X, Bug Fixes Needed",
|
112 |
-
"Product Y: In the Performance Optimization Stage Before Release"
|
113 |
-
], "development")
|
114 |
|
115 |
# ------------------------------
|
116 |
-
#
|
117 |
# ------------------------------
|
118 |
class ResearchRetriever:
|
119 |
def __init__(self):
|
120 |
-
self.
|
121 |
-
"
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
),
|
129 |
-
"development": development_docs.as_retriever(
|
130 |
-
search_type="similarity",
|
131 |
-
search_kwargs={'k': 3}
|
132 |
-
)
|
133 |
-
}
|
134 |
|
135 |
-
def retrieve(self, query: str
|
136 |
try:
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
return []
|
140 |
|
141 |
-
retriever = ResearchRetriever()
|
142 |
-
|
143 |
# ------------------------------
|
144 |
-
#
|
145 |
# ------------------------------
|
146 |
class CognitiveProcessor:
|
147 |
def __init__(self):
|
148 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
149 |
-
self.session_id = hashlib.sha256(datetime.now().isoformat().encode()).hexdigest()[:12]
|
150 |
|
151 |
def process_query(self, prompt: str) -> Dict:
|
152 |
-
futures = []
|
153 |
-
for
|
154 |
-
|
155 |
-
|
156 |
-
prompt
|
157 |
-
))
|
158 |
-
|
159 |
-
results = []
|
160 |
-
for future in as_completed(futures):
|
161 |
-
try:
|
162 |
-
results.append(future.result())
|
163 |
-
except Exception as e:
|
164 |
-
st.error(f"Processing Error: {str(e)}")
|
165 |
-
|
166 |
-
return self._consensus_check(results)
|
167 |
-
|
168 |
-
def _execute_api_request(self, prompt: str) -> Dict:
|
169 |
headers = {
|
170 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
171 |
-
"Content-Type": "application/json"
|
172 |
-
"X-Research-Session": self.session_id
|
173 |
}
|
174 |
|
175 |
try:
|
@@ -190,20 +191,25 @@ class CognitiveProcessor:
|
|
190 |
)
|
191 |
response.raise_for_status()
|
192 |
return response.json()
|
193 |
-
except
|
194 |
return {"error": str(e)}
|
195 |
|
196 |
-
def
|
197 |
valid = [r for r in results if "error" not in r]
|
198 |
if not valid:
|
199 |
return {"error": "All API requests failed"}
|
200 |
-
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# ------------------------------
|
203 |
-
#
|
204 |
# ------------------------------
|
205 |
class ResearchWorkflow:
|
206 |
def __init__(self):
|
|
|
207 |
self.processor = CognitiveProcessor()
|
208 |
self.workflow = StateGraph(AgentState)
|
209 |
self._build_workflow()
|
@@ -241,70 +247,87 @@ class ResearchWorkflow:
|
|
241 |
|
242 |
def retrieve_documents(self, state: AgentState) -> Dict:
|
243 |
try:
|
244 |
-
|
245 |
-
|
|
|
246 |
return {
|
247 |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
248 |
-
"context": {
|
249 |
-
"documents": docs,
|
250 |
-
"retrieval_time": time.time()
|
251 |
-
}
|
252 |
}
|
253 |
except Exception as e:
|
254 |
return self._error_state(f"Retrieval Error: {str(e)}")
|
255 |
|
256 |
def analyze_content(self, state: AgentState) -> Dict:
|
257 |
try:
|
258 |
-
docs =
|
259 |
-
|
|
|
260 |
response = self.processor.process_query(prompt)
|
261 |
|
262 |
if "error" in response:
|
263 |
-
|
|
|
|
|
|
|
264 |
|
265 |
return {
|
266 |
-
"messages": [AIMessage(content=
|
267 |
-
"context": {"analysis":
|
268 |
}
|
269 |
except Exception as e:
|
270 |
return self._error_state(f"Analysis Error: {str(e)}")
|
271 |
|
272 |
def validate_output(self, state: AgentState) -> Dict:
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
Respond with 'VALID' or 'INVALID'"""
|
284 |
|
285 |
response = self.processor.process_query(validation_prompt)
|
|
|
286 |
return {
|
287 |
-
"messages": [AIMessage(content=
|
|
|
288 |
}
|
289 |
|
290 |
def refine_results(self, state: AgentState) -> Dict:
|
291 |
-
refinement_prompt = f"""
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
|
299 |
response = self.processor.process_query(refinement_prompt)
|
300 |
return {
|
301 |
-
"messages": [AIMessage(content=response
|
302 |
"context": state["context"]
|
303 |
}
|
304 |
|
305 |
def _quality_check(self, state: AgentState) -> str:
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
def _error_state(self, message: str) -> Dict:
|
310 |
return {
|
@@ -374,20 +397,24 @@ class ResearchInterface:
|
|
374 |
border-radius: 8px;
|
375 |
margin: 1rem 0;
|
376 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
</style>
|
378 |
""", unsafe_allow_html=True)
|
379 |
|
380 |
def _build_sidebar(self):
|
381 |
with st.sidebar:
|
382 |
st.title("🔍 Research Database")
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
st.markdown(f"```\n{title}\n```")
|
387 |
-
|
388 |
-
st.subheader("Analysis Metrics")
|
389 |
-
st.metric("Vector Collections", 2)
|
390 |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
|
|
391 |
|
392 |
def _build_main_interface(self):
|
393 |
st.title("🧠 NeuroResearch AI")
|
@@ -399,54 +426,39 @@ class ResearchInterface:
|
|
399 |
|
400 |
def _execute_analysis(self, query: str):
|
401 |
try:
|
402 |
-
with st.spinner("
|
403 |
-
|
404 |
-
{"messages": [HumanMessage(content=query)]
|
405 |
)
|
406 |
|
407 |
-
|
408 |
-
self.
|
409 |
-
|
410 |
-
st.success("✅ Analysis Completed Successfully")
|
411 |
-
except Exception as e:
|
412 |
-
st.error(f"""**Analysis Failed**
|
413 |
-
{str(e)}
|
414 |
-
Potential issues:
|
415 |
-
- Complex query structure
|
416 |
-
- Document correlation failure
|
417 |
-
- Temporal processing constraints""")
|
418 |
-
|
419 |
-
def _render_event(self, event: Dict):
|
420 |
-
if 'ingest' in event:
|
421 |
-
with st.container():
|
422 |
-
st.success("✅ Query Ingested")
|
423 |
-
|
424 |
-
elif 'retrieve' in event:
|
425 |
-
with st.container():
|
426 |
-
docs = event['retrieve']['context']['documents']
|
427 |
-
st.info(f"📚 Retrieved {len(docs)} documents")
|
428 |
-
with st.expander("View Retrieved Documents", expanded=False):
|
429 |
-
for i, doc in enumerate(docs, 1):
|
430 |
-
st.markdown(f"**Document {i}**")
|
431 |
-
st.code(doc.page_content, language='text')
|
432 |
-
|
433 |
-
elif 'analyze' in event:
|
434 |
-
with st.container():
|
435 |
-
content = event['analyze']['messages'][0].content
|
436 |
-
with st.expander("Technical Analysis Report", expanded=True):
|
437 |
-
st.markdown(content)
|
438 |
-
|
439 |
-
elif 'validate' in event:
|
440 |
-
with st.container():
|
441 |
-
content = event['validate']['messages'][0].content
|
442 |
-
if "VALID" in content:
|
443 |
-
st.success("✅ Validation Passed")
|
444 |
-
with st.expander("View Validated Analysis", expanded=True):
|
445 |
-
st.markdown(content.split("Validation:")[0])
|
446 |
else:
|
447 |
-
|
448 |
-
|
449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
|
451 |
if __name__ == "__main__":
|
452 |
ResearchInterface()
|
|
|
3 |
# ------------------------------
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_core.documents import Document
|
9 |
from langgraph.graph import END, StateGraph
|
|
|
|
|
10 |
from typing_extensions import TypedDict, Annotated
|
11 |
from typing import Sequence, Dict, List, Optional, Any
|
12 |
import chromadb
|
13 |
+
import numpy as np
|
14 |
import os
|
15 |
import streamlit as st
|
16 |
import requests
|
17 |
import hashlib
|
18 |
+
import re
|
19 |
import time
|
|
|
20 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
21 |
from datetime import datetime
|
22 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
23 |
|
24 |
# ------------------------------
|
25 |
# State Schema Definition
|
26 |
# ------------------------------
|
27 |
class AgentState(TypedDict):
|
28 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
29 |
context: Dict[str, Any]
|
30 |
metadata: Dict[str, Any]
|
31 |
|
|
|
39 |
CHUNK_OVERLAP = 64
|
40 |
MAX_CONCURRENT_REQUESTS = 5
|
41 |
EMBEDDING_DIMENSIONS = 1536
|
42 |
+
RESEARCH_EMBEDDING = np.random.randn(1536)
|
43 |
+
|
44 |
DOCUMENT_MAP = {
|
45 |
+
"CV-Transformer Hybrid Architecture": {
|
46 |
+
"title": "Research Report: CV-Transformer Model (98% Accuracy)",
|
47 |
+
"content": """
|
48 |
+
Hybrid architecture combining CNNs and Transformers achieves 98% image recognition accuracy.
|
49 |
+
Key equation: $f(x) = \text{Attention}(\text{CNN}(x))$
|
50 |
+
Validation on ImageNet-1k: Top-1 Accuracy 98.2%, Inference Speed 42ms/img
|
51 |
+
"""
|
52 |
+
},
|
53 |
+
"Transformer Architecture Analysis": {
|
54 |
+
"title": "Academic Paper: Transformers in NLP",
|
55 |
+
"content": """
|
56 |
+
Self-attention mechanism remains core innovation:
|
57 |
+
$\text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$
|
58 |
+
GLUE Benchmark Score: 92.4%, Training Efficiency: 1.8x vs RNNs
|
59 |
+
"""
|
60 |
+
},
|
61 |
+
"Quantum ML Frontiers": {
|
62 |
+
"title": "Quantum Machine Learning Review",
|
63 |
+
"content": """
|
64 |
+
Quantum gradient descent enables faster optimization:
|
65 |
+
$\theta_{t+1} = \theta_t - \eta \nabla_\theta \mathcal{L}(\theta_t)$
|
66 |
+
100x speedup on optimization tasks, 58% energy reduction
|
67 |
+
"""
|
68 |
+
}
|
69 |
}
|
70 |
+
|
71 |
+
ANALYSIS_TEMPLATE = """Analyze these technical documents:
|
72 |
{context}
|
73 |
|
74 |
+
Respond in MARKDOWN with:
|
75 |
+
1. **Key Technical Contributions** (bullet points with equations)
|
76 |
+
2. **Novel Methodologies** (algorithms with math notation)
|
77 |
+
3. **Empirical Results** (comparative metrics)
|
78 |
+
4. **Applications** (domain-specific implementations)
|
79 |
+
5. **Limitations** (theoretical/practical boundaries)
|
80 |
|
81 |
+
Include LaTeX equations where applicable."""
|
|
|
82 |
|
|
|
83 |
if not ResearchConfig.DEEPSEEK_API_KEY:
|
84 |
+
st.error("""**Configuration Required**
|
85 |
+
1. Get DeepSeek API key: [platform.deepseek.com](https://platform.deepseek.com/)
|
86 |
+
2. Set secret: `DEEPSEEK_API_KEY`
|
87 |
3. Rebuild deployment""")
|
88 |
st.stop()
|
89 |
|
90 |
# ------------------------------
|
91 |
+
# Document Processing System
|
92 |
# ------------------------------
|
93 |
class QuantumDocumentManager:
|
94 |
def __init__(self):
|
|
|
98 |
dimensions=ResearchConfig.EMBEDDING_DIMENSIONS
|
99 |
)
|
100 |
|
101 |
+
def create_collection(self, document_map: Dict[str, Dict[str, str]], collection_name: str) -> Chroma:
|
102 |
splitter = RecursiveCharacterTextSplitter(
|
103 |
chunk_size=ResearchConfig.CHUNK_SIZE,
|
104 |
chunk_overlap=ResearchConfig.CHUNK_OVERLAP,
|
105 |
separators=["\n\n", "\n", "|||"]
|
106 |
)
|
107 |
+
|
108 |
+
docs = []
|
109 |
+
for key, data in document_map.items():
|
110 |
+
chunks = splitter.split_text(data["content"])
|
111 |
+
for chunk in chunks:
|
112 |
+
docs.append(Document(
|
113 |
+
page_content=chunk,
|
114 |
+
metadata={
|
115 |
+
"title": data["title"],
|
116 |
+
"source": collection_name,
|
117 |
+
"hash": hashlib.sha256(chunk.encode()).hexdigest()[:16]
|
118 |
+
}
|
119 |
+
))
|
120 |
+
|
121 |
return Chroma.from_documents(
|
122 |
documents=docs,
|
123 |
embedding=self.embeddings,
|
|
|
124 |
collection_name=collection_name,
|
125 |
ids=[self._document_id(doc.page_content) for doc in docs]
|
126 |
)
|
|
|
128 |
def _document_id(self, content: str) -> str:
|
129 |
return f"{hashlib.sha256(content.encode()).hexdigest()[:16]}-{int(time.time())}"
|
130 |
|
131 |
+
# Initialize document system
|
132 |
qdm = QuantumDocumentManager()
|
133 |
+
research_docs = qdm.create_collection(ResearchConfig.DOCUMENT_MAP, "research")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# ------------------------------
|
136 |
+
# Intelligent Retrieval System
|
137 |
# ------------------------------
|
138 |
class ResearchRetriever:
|
139 |
def __init__(self):
|
140 |
+
self.retriever = research_docs.as_retriever(
|
141 |
+
search_type="mmr",
|
142 |
+
search_kwargs={
|
143 |
+
'k': 4,
|
144 |
+
'fetch_k': 20,
|
145 |
+
'lambda_mult': 0.85
|
146 |
+
}
|
147 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
def retrieve(self, query: str) -> List[Document]:
|
150 |
try:
|
151 |
+
docs = self.retriever.invoke(query)
|
152 |
+
if not docs:
|
153 |
+
raise ValueError("No relevant documents found")
|
154 |
+
return docs
|
155 |
+
except Exception as e:
|
156 |
+
st.error(f"Retrieval Error: {str(e)}")
|
157 |
return []
|
158 |
|
|
|
|
|
159 |
# ------------------------------
|
160 |
+
# Robust Processing Core
|
161 |
# ------------------------------
|
162 |
class CognitiveProcessor:
|
163 |
def __init__(self):
|
164 |
self.executor = ThreadPoolExecutor(max_workers=ResearchConfig.MAX_CONCURRENT_REQUESTS)
|
|
|
165 |
|
166 |
def process_query(self, prompt: str) -> Dict:
|
167 |
+
futures = [self.executor.submit(self._api_request, prompt) for _ in range(3)]
|
168 |
+
return self._best_result([f.result() for f in as_completed(futures)])
|
169 |
+
|
170 |
+
def _api_request(self, prompt: str) -> Dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
headers = {
|
172 |
"Authorization": f"Bearer {ResearchConfig.DEEPSEEK_API_KEY}",
|
173 |
+
"Content-Type": "application/json"
|
|
|
174 |
}
|
175 |
|
176 |
try:
|
|
|
191 |
)
|
192 |
response.raise_for_status()
|
193 |
return response.json()
|
194 |
+
except Exception as e:
|
195 |
return {"error": str(e)}
|
196 |
|
197 |
+
def _best_result(self, results: List[Dict]) -> Dict:
|
198 |
valid = [r for r in results if "error" not in r]
|
199 |
if not valid:
|
200 |
return {"error": "All API requests failed"}
|
201 |
+
|
202 |
+
# Select response with most technical content
|
203 |
+
contents = [r.get('choices', [{}])[0].get('message', {}).get('content', '') for r in valid]
|
204 |
+
tech_scores = [len(re.findall(r"\$.*?\$", c)) for c in contents]
|
205 |
+
return valid[np.argmax(tech_scores)]
|
206 |
|
207 |
# ------------------------------
|
208 |
+
# Validation Workflow Engine
|
209 |
# ------------------------------
|
210 |
class ResearchWorkflow:
|
211 |
def __init__(self):
|
212 |
+
self.retriever = ResearchRetriever()
|
213 |
self.processor = CognitiveProcessor()
|
214 |
self.workflow = StateGraph(AgentState)
|
215 |
self._build_workflow()
|
|
|
247 |
|
248 |
def retrieve_documents(self, state: AgentState) -> Dict:
|
249 |
try:
|
250 |
+
docs = self.retriever.retrieve(state["context"]["raw_query"])
|
251 |
+
if not docs:
|
252 |
+
return self._error_state("Document correlation failure - no relevant papers found")
|
253 |
return {
|
254 |
"messages": [AIMessage(content=f"Retrieved {len(docs)} documents")],
|
255 |
+
"context": {"documents": docs}
|
|
|
|
|
|
|
256 |
}
|
257 |
except Exception as e:
|
258 |
return self._error_state(f"Retrieval Error: {str(e)}")
|
259 |
|
260 |
def analyze_content(self, state: AgentState) -> Dict:
|
261 |
try:
|
262 |
+
docs = state["context"]["documents"]
|
263 |
+
context = "\n\n".join([f"### {doc.metadata['title']}\n{doc.page_content}" for doc in docs])
|
264 |
+
prompt = ResearchConfig.ANALYSIS_TEMPLATE.format(context=context)
|
265 |
response = self.processor.process_query(prompt)
|
266 |
|
267 |
if "error" in response:
|
268 |
+
raise RuntimeError(response["error"])
|
269 |
+
|
270 |
+
analysis = response['choices'][0]['message']['content']
|
271 |
+
self._validate_analysis_structure(analysis)
|
272 |
|
273 |
return {
|
274 |
+
"messages": [AIMessage(content=analysis)],
|
275 |
+
"context": {"analysis": analysis}
|
276 |
}
|
277 |
except Exception as e:
|
278 |
return self._error_state(f"Analysis Error: {str(e)}")
|
279 |
|
280 |
def validate_output(self, state: AgentState) -> Dict:
|
281 |
+
validation_prompt = f"""Validate this technical analysis:
|
282 |
+
{state["messages"][-1].content}
|
283 |
+
|
284 |
+
Check for:
|
285 |
+
1. Mathematical accuracy
|
286 |
+
2. Empirical evidence
|
287 |
+
3. Technical depth
|
288 |
+
4. Logical consistency
|
289 |
+
|
290 |
+
Respond with 'VALID' or 'INVALID'"""
|
|
|
291 |
|
292 |
response = self.processor.process_query(validation_prompt)
|
293 |
+
content = response.get('choices', [{}])[0].get('message', {}).get('content', '')
|
294 |
return {
|
295 |
+
"messages": [AIMessage(content=f"{state['messages'][-1].content}\n\n## Validation\n{content}")],
|
296 |
+
"context": {"valid": "VALID" in content}
|
297 |
}
|
298 |
|
299 |
def refine_results(self, state: AgentState) -> Dict:
|
300 |
+
refinement_prompt = f"""Improve this analysis:
|
301 |
+
{state["messages"][-1].content}
|
302 |
+
|
303 |
+
Focus on:
|
304 |
+
1. Enhancing mathematical rigor
|
305 |
+
2. Adding empirical references
|
306 |
+
3. Strengthening technical arguments"""
|
307 |
|
308 |
response = self.processor.process_query(refinement_prompt)
|
309 |
return {
|
310 |
+
"messages": [AIMessage(content=response['choices'][0]['message']['content'])],
|
311 |
"context": state["context"]
|
312 |
}
|
313 |
|
314 |
def _quality_check(self, state: AgentState) -> str:
|
315 |
+
return "valid" if state.get("context", {}).get("valid", False) else "invalid"
|
316 |
+
|
317 |
+
def _validate_analysis_structure(self, content: str):
|
318 |
+
required_sections = [
|
319 |
+
"Key Technical Contributions",
|
320 |
+
"Novel Methodologies",
|
321 |
+
"Empirical Results",
|
322 |
+
"Applications",
|
323 |
+
"Limitations"
|
324 |
+
]
|
325 |
+
missing = [s for s in required_sections if f"## {s}" not in content]
|
326 |
+
if missing:
|
327 |
+
raise ValueError(f"Missing critical sections: {', '.join(missing)}")
|
328 |
+
|
329 |
+
if not re.search(r"\$.*?\$", content):
|
330 |
+
raise ValueError("Analysis lacks required mathematical notation")
|
331 |
|
332 |
def _error_state(self, message: str) -> Dict:
|
333 |
return {
|
|
|
397 |
border-radius: 8px;
|
398 |
margin: 1rem 0;
|
399 |
}
|
400 |
+
|
401 |
+
code {
|
402 |
+
color: #2ecc71;
|
403 |
+
background: #002200;
|
404 |
+
padding: 2px 4px;
|
405 |
+
border-radius: 4px;
|
406 |
+
}
|
407 |
</style>
|
408 |
""", unsafe_allow_html=True)
|
409 |
|
410 |
def _build_sidebar(self):
|
411 |
with st.sidebar:
|
412 |
st.title("🔍 Research Database")
|
413 |
+
for key, data in ResearchConfig.DOCUMENT_MAP.items():
|
414 |
+
with st.expander(data["title"]):
|
415 |
+
st.markdown(f"```\n{data['content']}\n```")
|
|
|
|
|
|
|
|
|
416 |
st.metric("Embedding Dimensions", ResearchConfig.EMBEDDING_DIMENSIONS)
|
417 |
+
st.metric("Document Chunks", len(research_docs.get()['ids']))
|
418 |
|
419 |
def _build_main_interface(self):
|
420 |
st.title("🧠 NeuroResearch AI")
|
|
|
426 |
|
427 |
def _execute_analysis(self, query: str):
|
428 |
try:
|
429 |
+
with st.spinner("Performing deep technical analysis..."):
|
430 |
+
result = self.workflow.app.invoke(
|
431 |
+
{"messages": [HumanMessage(content=query)]}
|
432 |
)
|
433 |
|
434 |
+
if result.get("context", {}).get("error"):
|
435 |
+
self._show_error(result["context"].get("error", "Unknown error"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
else:
|
437 |
+
self._display_results(result)
|
438 |
+
except Exception as e:
|
439 |
+
self._show_error(str(e))
|
440 |
+
|
441 |
+
def _display_results(self, result):
|
442 |
+
content = result["messages"][-1].content
|
443 |
+
with st.expander("Technical Analysis Report", expanded=True):
|
444 |
+
st.markdown(content)
|
445 |
+
|
446 |
+
with st.expander("Source Documents", expanded=False):
|
447 |
+
for doc in result["context"].get("documents", []):
|
448 |
+
st.markdown(f"**{doc.metadata['title']}**")
|
449 |
+
st.code(doc.page_content, language='latex')
|
450 |
+
|
451 |
+
def _show_error(self, message):
|
452 |
+
st.error(f"""
|
453 |
+
⚠️ Analysis Failed: {message}
|
454 |
+
|
455 |
+
Troubleshooting Steps:
|
456 |
+
1. Check query specificity
|
457 |
+
2. Verify document connections
|
458 |
+
3. Ensure mathematical notation in sources
|
459 |
+
4. Review API key validity
|
460 |
+
5. Simplify complex query structures
|
461 |
+
""")
|
462 |
|
463 |
if __name__ == "__main__":
|
464 |
ResearchInterface()
|