Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
"""
|
2 |
-
AI Research Assistant
|
3 |
"""
|
4 |
|
5 |
# ------------------------------
|
6 |
-
# Imports &
|
7 |
# ------------------------------
|
8 |
import os
|
9 |
import re
|
@@ -11,319 +11,288 @@ import time
|
|
11 |
import chromadb
|
12 |
import requests
|
13 |
import streamlit as st
|
14 |
-
from typing import Sequence,
|
15 |
-
from
|
16 |
-
from
|
17 |
-
from functools import lru_cache
|
18 |
-
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
19 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
from langchain_community.vectorstores import Chroma
|
21 |
from langchain.tools.retriever import create_retriever_tool
|
22 |
from langgraph.graph import END, StateGraph
|
23 |
from langgraph.prebuilt import ToolNode
|
24 |
-
from
|
25 |
from chromadb.config import Settings
|
26 |
-
import
|
27 |
-
import hashlib
|
28 |
-
from queue import Queue
|
29 |
|
30 |
# ------------------------------
|
31 |
-
#
|
32 |
# ------------------------------
|
33 |
-
class
|
34 |
-
|
35 |
-
MAX_CONCURRENT_REQUESTS = 3
|
36 |
-
REQUEST_RATE_LIMIT = 5 # Requests per minute
|
37 |
-
CACHE_SIZE = 1000
|
38 |
-
SECURITY_SALT = os.environ.get("SECURITY_SALT", "default-secure-salt")
|
39 |
|
40 |
# ------------------------------
|
41 |
-
#
|
42 |
# ------------------------------
|
43 |
-
class
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
def generate_request_signature(payload: dict) -> str:
|
52 |
-
timestamp = str(int(time.time()))
|
53 |
-
data = timestamp + Config.SECURITY_SALT + str(payload)
|
54 |
-
return hashlib.sha256(data.encode()).hexdigest()
|
55 |
|
56 |
# ------------------------------
|
57 |
-
#
|
58 |
# ------------------------------
|
59 |
-
class
|
60 |
def __init__(self):
|
61 |
-
self.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
class EnterpriseWorkflowEngine:
|
84 |
-
def __init__(self):
|
85 |
-
self.text_processor = AdvancedTextProcessor()
|
86 |
-
self._init_vector_stores()
|
87 |
-
self._init_tools()
|
88 |
-
self._build_graph()
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
93 |
)
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
|
98 |
-
|
99 |
-
self.tools = [
|
100 |
create_retriever_tool(
|
101 |
-
|
102 |
"research_db",
|
103 |
-
"
|
104 |
),
|
105 |
create_retriever_tool(
|
106 |
-
|
107 |
"development_db",
|
108 |
-
"
|
109 |
)
|
110 |
]
|
111 |
-
|
112 |
-
def
|
113 |
-
|
114 |
-
|
115 |
-
self.workflow.add_node("retrieve", ToolNode(self.tools))
|
116 |
-
self.workflow.add_node("generate", self.generate_answer)
|
117 |
-
self.workflow.add_node("rewrite", self.rewrite_query)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
{"retrieve": "retrieve", "direct": "generate"}
|
123 |
-
)
|
124 |
-
self.workflow.add_conditional_edges(
|
125 |
-
"retrieve", self._evaluate_results,
|
126 |
-
{"generate": "generate", "rewrite": "rewrite"}
|
127 |
-
)
|
128 |
-
self.workflow.add_edge("generate", END)
|
129 |
-
self.workflow.add_edge("rewrite", "agent")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
def _route_action(self, state: AgentState) -> str:
|
134 |
-
# Advanced routing logic using ML-based classification
|
135 |
-
last_msg = state["messages"][-1].content.lower()
|
136 |
-
research_keywords = {"research", "study", "paper", "algorithm"}
|
137 |
-
dev_keywords = {"project", "status", "development", "update"}
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
def _evaluate_results(self, state: AgentState) -> str:
|
146 |
-
# Advanced result evaluation with confidence scoring
|
147 |
-
results = state["messages"][-1].content
|
148 |
-
doc_count = results.count("Document(")
|
149 |
-
confidence = min(doc_count / 5, 1.0) # Scale based on retrieved docs
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
# Core Components with Enterprise Features
|
156 |
-
def quantum_agent(self, state: AgentState):
|
157 |
-
# Implementation with advanced security and rate limiting
|
158 |
-
pass
|
159 |
-
|
160 |
-
def generate_answer(self, state: AgentState):
|
161 |
-
# Multi-stage generation with fact-checking
|
162 |
-
pass
|
163 |
-
|
164 |
-
def rewrite_query(self, state: AgentState):
|
165 |
-
# Context-aware query refinement
|
166 |
-
pass
|
167 |
-
|
168 |
-
# ------------------------------
|
169 |
-
# Military-Grade Security Setup
|
170 |
-
# ------------------------------
|
171 |
-
if not SecurityManager.validate_api_key(Config.DEEPSEEK_API_KEY):
|
172 |
-
st.error("""
|
173 |
-
🔐 Critical Security Alert:
|
174 |
-
Invalid API key configuration detected!
|
175 |
-
Please verify your DEEPSEEK_API_KEY environment variable.
|
176 |
-
""")
|
177 |
-
st.stop()
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
settings=Settings(allow_reset=False, anonymized_telemetry=False)
|
186 |
-
)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
def __init__(self):
|
193 |
-
self._init_style()
|
194 |
-
self._init_session_state()
|
195 |
-
|
196 |
-
def _init_style(self):
|
197 |
-
st.set_page_config(
|
198 |
-
page_title="NeuroSphere AI Analyst",
|
199 |
-
layout="wide",
|
200 |
-
initial_sidebar_state="expanded",
|
201 |
-
menu_items={
|
202 |
-
'Get Help': 'https://neurosphere.ai',
|
203 |
-
'Report a bug': "https://neurosphere.ai/support",
|
204 |
-
'About': "# NeuroSphere v2.0 - Cognitive Analysis Suite"
|
205 |
-
}
|
206 |
-
)
|
207 |
-
|
208 |
-
st.markdown(f"""
|
209 |
-
<style>
|
210 |
-
:root {{
|
211 |
-
--primary: #2ecc71;
|
212 |
-
--secondary: #3498db;
|
213 |
-
--background: #0f0f12;
|
214 |
-
--text: #ecf0f1;
|
215 |
-
}}
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
}}
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
.
|
232 |
-
|
233 |
-
border: none;
|
234 |
-
border-radius: 8px;
|
235 |
-
padding: 12px 24px;
|
236 |
-
font-weight: 700;
|
237 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
|
238 |
-
}}
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
padding: 1.2rem;
|
250 |
-
margin: 1rem 0;
|
251 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.3);
|
252 |
-
}}
|
253 |
-
</style>
|
254 |
-
""", unsafe_allow_html=True)
|
255 |
-
|
256 |
-
def _init_session_state(self):
|
257 |
-
if "conversation" not in st.session_state:
|
258 |
-
st.session_state.conversation = []
|
259 |
-
if "last_request" not in st.session_state:
|
260 |
-
st.session_state.last_request = 0
|
261 |
-
|
262 |
-
def render(self):
|
263 |
-
st.title("🧠 NeuroSphere AI Research Analyst")
|
264 |
-
self._render_sidebar()
|
265 |
-
self._render_main_interface()
|
266 |
-
|
267 |
-
def _render_sidebar(self):
|
268 |
-
with st.sidebar:
|
269 |
-
st.header("📡 Knowledge Nucleus")
|
270 |
-
with st.expander("🔬 Research Corpus", expanded=True):
|
271 |
-
for text in research_texts:
|
272 |
-
st.markdown(f'<div class="document-card">{text}</div>',
|
273 |
-
unsafe_allow_html=True)
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
st.subheader("📊 Cognitive Metrics")
|
285 |
-
col1, col2 = st.columns(2)
|
286 |
-
col1.metric("Processing Speed", "42ms", "-3ms")
|
287 |
-
col2.metric("Accuracy Confidence", "98.7%", "+0.5%")
|
288 |
-
st.progress(0.87, text="Knowledge Coverage")
|
289 |
-
|
290 |
-
def _render_main_interface(self):
|
291 |
-
col1, col2 = st.columns([1, 2])
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
-
|
311 |
-
|
312 |
-
st.subheader("🔍 Deep Analysis Matrix")
|
313 |
-
# Implement advanced visualization components
|
314 |
|
315 |
-
|
316 |
-
# Implement enterprise query handling with rate limiting
|
317 |
-
pass
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
# ------------------------------
|
324 |
-
# Quantum Execution Core
|
325 |
-
# ------------------------------
|
326 |
if __name__ == "__main__":
|
327 |
-
|
328 |
-
|
329 |
-
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
AI Research Assistant
|
3 |
"""
|
4 |
|
5 |
# ------------------------------
|
6 |
+
# Core Imports & Configuration
|
7 |
# ------------------------------
|
8 |
import os
|
9 |
import re
|
|
|
11 |
import chromadb
|
12 |
import requests
|
13 |
import streamlit as st
|
14 |
+
from typing import Sequence, Tuple
|
15 |
+
from typing_extensions import TypedDict, Annotated
|
16 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
|
|
|
|
17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
from langchain_community.vectorstores import Chroma
|
19 |
from langchain.tools.retriever import create_retriever_tool
|
20 |
from langgraph.graph import END, StateGraph
|
21 |
from langgraph.prebuilt import ToolNode
|
22 |
+
from langgraph.graph.message import add_messages
|
23 |
from chromadb.config import Settings
|
24 |
+
from langchain_openai import OpenAIEmbeddings
|
|
|
|
|
25 |
|
26 |
# ------------------------------
|
27 |
+
# Type Definitions
|
28 |
# ------------------------------
|
29 |
+
class AgentState(TypedDict):
|
30 |
+
messages: Annotated[Sequence[AIMessage | HumanMessage], add_messages]
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# ------------------------------
|
33 |
+
# Configuration & Constants
|
34 |
# ------------------------------
|
35 |
+
class Config:
|
36 |
+
API_KEY = os.environ.get("DEEPSEEK_API_KEY")
|
37 |
+
CHROMA_PATH = "chroma_db"
|
38 |
+
TEXT_SPLITTER_CONFIG = {
|
39 |
+
"chunk_size": 512,
|
40 |
+
"chunk_overlap": 128,
|
41 |
+
"separators": ["\n\n", "\n", ". ", "! ", "? "]
|
42 |
+
}
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# ------------------------------
|
45 |
+
# Core System Components
|
46 |
# ------------------------------
|
47 |
+
class ResearchAssistant:
|
48 |
def __init__(self):
|
49 |
+
self.embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
50 |
+
self.vector_stores = self._init_vector_stores()
|
51 |
+
self.tools = self._create_tools()
|
52 |
+
self.workflow = self._build_workflow()
|
53 |
+
|
54 |
+
def _init_vector_stores(self) -> Tuple[Chroma, Chroma]:
|
55 |
+
"""Initialize vector stores with proper document processing"""
|
56 |
+
splitter = RecursiveCharacterTextSplitter(**Config.TEXT_SPLITTER_CONFIG)
|
57 |
|
58 |
+
research_docs = splitter.create_documents([
|
59 |
+
"Research Report: New AI Model Achieves 98% Image Recognition Accuracy",
|
60 |
+
"Transformers: The New NLP Architecture Standard",
|
61 |
+
"Quantum Machine Learning: Emerging Trends and Applications"
|
62 |
+
])
|
63 |
+
|
64 |
+
development_docs = splitter.create_documents([
|
65 |
+
"Project A: UI Design Finalized, API Integration Phase",
|
66 |
+
"Project B: Feature Testing and Bug Fixes",
|
67 |
+
"Product Y: Performance Optimization Pre-Release"
|
68 |
+
])
|
69 |
|
70 |
+
client = chromadb.PersistentClient(
|
71 |
+
path=Config.CHROMA_PATH,
|
72 |
+
settings=Settings(anonymized_telemetry=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
return (
|
75 |
+
Chroma.from_documents(research_docs, self.embeddings,
|
76 |
+
client=client, collection_name="research"),
|
77 |
+
Chroma.from_documents(development_docs, self.embeddings,
|
78 |
+
client=client, collection_name="development")
|
79 |
)
|
80 |
+
|
81 |
+
def _create_tools(self):
|
82 |
+
"""Create retrieval tools with optimized search parameters"""
|
83 |
+
research_retriever = self.vector_stores[0].as_retriever(
|
84 |
+
search_kwargs={"k": 3, "score_threshold": 0.7}
|
85 |
+
)
|
86 |
+
development_retriever = self.vector_stores[1].as_retriever(
|
87 |
+
search_kwargs={"k": 3, "score_threshold": 0.7}
|
88 |
)
|
89 |
|
90 |
+
return [
|
|
|
91 |
create_retriever_tool(
|
92 |
+
research_retriever,
|
93 |
"research_db",
|
94 |
+
"Access technical research papers and reports"
|
95 |
),
|
96 |
create_retriever_tool(
|
97 |
+
development_retriever,
|
98 |
"development_db",
|
99 |
+
"Retrieve project development status updates"
|
100 |
)
|
101 |
]
|
102 |
+
|
103 |
+
def _build_workflow(self):
|
104 |
+
"""Construct and return the processing workflow"""
|
105 |
+
workflow = StateGraph(AgentState)
|
|
|
|
|
|
|
106 |
|
107 |
+
workflow.add_node("analyze", self.analyze_query)
|
108 |
+
workflow.add_node("retrieve", ToolNode(self.tools))
|
109 |
+
workflow.add_node("synthesize", self.synthesize_response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
workflow.set_entry_point("analyze")
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
workflow.add_conditional_edges(
|
114 |
+
"analyze",
|
115 |
+
self._needs_retrieval,
|
116 |
+
{"retrieve": "retrieve", "direct": "synthesize"}
|
117 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
workflow.add_edge("retrieve", "synthesize")
|
120 |
+
workflow.add_edge("synthesize", END)
|
121 |
+
|
122 |
+
return workflow.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
def _needs_retrieval(self, state: AgentState) -> str:
|
125 |
+
"""Determine if document retrieval is needed"""
|
126 |
+
query = state["messages"][-1].content.lower()
|
127 |
+
return "retrieve" if any(kw in query for kw in {
|
128 |
+
"research", "study", "project", "develop", "trend"
|
129 |
+
}) else "direct"
|
|
|
|
|
130 |
|
131 |
+
def analyze_query(self, state: AgentState):
|
132 |
+
"""Analyze user query and determine next steps"""
|
133 |
+
try:
|
134 |
+
user_input = state["messages"][-1].content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
headers = {
|
137 |
+
"Authorization": f"Bearer {Config.API_KEY}",
|
138 |
+
"Content-Type": "application/json"
|
139 |
+
}
|
|
|
140 |
|
141 |
+
response = requests.post(
|
142 |
+
"https://api.deepseek.com/v1/chat/completions",
|
143 |
+
headers=headers,
|
144 |
+
json={
|
145 |
+
"model": "deepseek-chat",
|
146 |
+
"messages": [{
|
147 |
+
"role": "user",
|
148 |
+
"content": f"""Analyze this query and format as:
|
149 |
+
CATEGORY: [RESEARCH|DEVELOPMENT|GENERAL]
|
150 |
+
KEY_TERMS: comma-separated list
|
151 |
+
{user_input}"""
|
152 |
+
}],
|
153 |
+
"temperature": 0.3
|
154 |
+
},
|
155 |
+
timeout=15
|
156 |
+
)
|
157 |
|
158 |
+
response.raise_for_status()
|
159 |
+
analysis = response.json()["choices"][0]["message"]["content"]
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
return {"messages": [AIMessage(content=analysis)]}
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
return {"messages": [AIMessage(
|
165 |
+
content=f"Analysis Error: {str(e)}. Please rephrase your question."
|
166 |
+
)]}
|
167 |
+
|
168 |
+
def synthesize_response(self, state: AgentState):
|
169 |
+
"""Generate final response with citations"""
|
170 |
+
try:
|
171 |
+
context = "\n".join([msg.content for msg in state["messages"]])
|
172 |
|
173 |
+
headers = {
|
174 |
+
"Authorization": f"Bearer {Config.API_KEY}",
|
175 |
+
"Content-Type": "application/json"
|
176 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
response = requests.post(
|
179 |
+
"https://api.deepseek.com/v1/chat/completions",
|
180 |
+
headers=headers,
|
181 |
+
json={
|
182 |
+
"model": "deepseek-chat",
|
183 |
+
"messages": [{
|
184 |
+
"role": "user",
|
185 |
+
"content": f"""Synthesize this information:
|
186 |
+
{context}
|
187 |
+
|
188 |
+
Include:
|
189 |
+
1. Key findings
|
190 |
+
2. Supporting evidence
|
191 |
+
3. Technical details
|
192 |
+
4. Potential applications"""
|
193 |
+
}],
|
194 |
+
"temperature": 0.5
|
195 |
+
},
|
196 |
+
timeout=20
|
197 |
+
)
|
198 |
|
199 |
+
response.raise_for_status()
|
200 |
+
return {"messages": [AIMessage(
|
201 |
+
content=response.json()["choices"][0]["message"]["content"]
|
202 |
+
)]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
except Exception as e:
|
205 |
+
return {"messages": [AIMessage(
|
206 |
+
content=f"Synthesis Error: {str(e)}. Please try again later."
|
207 |
+
)]}
|
208 |
+
|
209 |
+
# ------------------------------
|
210 |
+
# Professional UI Interface
|
211 |
+
# ------------------------------
|
212 |
+
def main():
|
213 |
+
st.set_page_config(
|
214 |
+
page_title="Research Assistant Pro",
|
215 |
+
layout="wide",
|
216 |
+
initial_sidebar_state="expanded"
|
217 |
+
)
|
218 |
|
219 |
+
# Dark theme implementation
|
220 |
+
st.markdown("""
|
221 |
+
<style>
|
222 |
+
.stApp {
|
223 |
+
background-color: #0f1114;
|
224 |
+
color: #ffffff;
|
225 |
+
}
|
226 |
+
.stTextInput input, .stTextArea textarea {
|
227 |
+
background-color: #1e1e24 !important;
|
228 |
+
color: #ffffff !important;
|
229 |
+
}
|
230 |
+
.stButton>button {
|
231 |
+
background: #2563eb;
|
232 |
+
transition: all 0.2s;
|
233 |
+
}
|
234 |
+
.stButton>button:hover {
|
235 |
+
background: #1d4ed8;
|
236 |
+
transform: scale(1.02);
|
237 |
+
}
|
238 |
+
.result-card {
|
239 |
+
background: #1a1a1f;
|
240 |
+
border-radius: 8px;
|
241 |
+
padding: 1.5rem;
|
242 |
+
margin: 1rem 0;
|
243 |
+
}
|
244 |
+
</style>
|
245 |
+
""", unsafe_allow_html=True)
|
246 |
|
247 |
+
st.title("🔍 Research Assistant Pro")
|
248 |
+
st.write("Advanced AI-Powered Research Analysis")
|
|
|
|
|
249 |
|
250 |
+
col1, col2 = st.columns([1, 2])
|
|
|
|
|
251 |
|
252 |
+
with col1:
|
253 |
+
with st.form("query_form"):
|
254 |
+
query = st.text_area("Research Query:", height=150,
|
255 |
+
placeholder="Enter your research question...")
|
256 |
+
submitted = st.form_submit_button("Analyze")
|
257 |
+
|
258 |
+
if submitted and query:
|
259 |
+
with st.spinner("Processing..."):
|
260 |
+
try:
|
261 |
+
assistant = ResearchAssistant()
|
262 |
+
result = assistant.workflow.invoke({"messages": [
|
263 |
+
HumanMessage(content=query)
|
264 |
+
]})
|
265 |
+
|
266 |
+
with st.expander("Analysis Details", expanded=True):
|
267 |
+
st.markdown(f"""
|
268 |
+
<div class="result-card">
|
269 |
+
{result['messages'][-1].content}
|
270 |
+
</div>
|
271 |
+
""", unsafe_allow_html=True)
|
272 |
+
except Exception as e:
|
273 |
+
st.error(f"Processing Error: {str(e)}")
|
274 |
+
|
275 |
+
with col2:
|
276 |
+
st.subheader("Knowledge Base")
|
277 |
+
with st.expander("Research Documents"):
|
278 |
+
st.info("""
|
279 |
+
- Advanced Image Recognition Systems
|
280 |
+
- Transformer Architecture Analysis
|
281 |
+
- Quantum ML Research
|
282 |
+
""")
|
283 |
+
|
284 |
+
with st.expander("Development Updates"):
|
285 |
+
st.info("""
|
286 |
+
- Project A: API Integration Phase
|
287 |
+
- Project B: Feature Testing
|
288 |
+
- Product Y: Optimization Stage
|
289 |
+
""")
|
290 |
|
|
|
|
|
|
|
291 |
if __name__ == "__main__":
|
292 |
+
if not Config.API_KEY:
|
293 |
+
st.error("""
|
294 |
+
🔑 Configuration Required:
|
295 |
+
Set DEEPSEEK_API_KEY environment variable
|
296 |
+
""")
|
297 |
+
st.stop()
|
298 |
+
main()
|